ac

Implementation of KNN and AHP-TOPSIS as Recommendation System for Mustahik Selection

Penulis

  • Winda Aprianti Politeknik Negeri Tanah Laut, Indonesia
  • Jaka Permadi Politeknik Negeri Tanah Laut, Indonesia
  • Herfia Rhomadhona Politeknik Negeri Tanah Laut, Indonesia
  • Noor Amelia Politeknik Negeri Tanah Laut, Indonesia

DOI:

10.47709/brilliance.v4i1.3883

Kata Kunci:

AHP, KNN, TOPSIS, Mustahik, Recommendation System

Dimension Badge Record



Abstrak

The National Amil Zakat Agency (BAZNAS) has the task of managing zakat on a national scale, including zakat. The number of prospective zakat recipients is greater than the availability of zakat funds distributed, which has an impact on the need for a selection process for mustahik. In this research, to assist the mustahik selection process, KNN will be used to classify mustahik candidates who meet the requirements, AHP to obtain consistent weights, and TOPSIS to provide recommendations for the order of mustahik whose zakat will be distributed. The dataset used in the research consisted of 77 data consisting of the criteria for number of dependents, husband's job, wife's job, total income, total expenses, and acceptance status of mustahik candidates. The application of KNN produced 15 data that were declared worthy of being considered mustahik. In the next stage, using AHP, the weights for each criterion were obtained at 12.66%, 9.23%, 10.10%, 45.96% and 22.04%. These weights were used in the TOPSIS decision support system and the results obtained were that the 76th mustahik candidate was the first ranked candidate to be proposed as a mustahik. In this research, a system was also built using KNN and AHP-TOPSIS using the PHP programming language as a recommendation system tool.

Google Scholar Cite Analysis
Abstrak viewed = 76 times

Referensi

Adi, S., & Wintarti, A. (2022). Komparasi Metode Support Vector Machine (SVM), K-Nearest Neighbors (KNN), dan Random Forest (RF) Untuk Prediksi Penyakit Gagal Jantung. MATHunesa: Jurnal Ilmiah Matematika, 10(2), 258–268.https://doi.org/10.26740/mathunesa.v10n2.p258-268

Amelia, N., & Aprianti, W. (2023). The Comparison of Decision Tree and K-Nearest Neighbor Performance for Determining Mustahik. Brilliance: Research of Artificial Intelligence, 3(2), 81-86. https://doi.org/10.47709/brilliance.v3i2.2953.

Andrian, Steele, Salim, E. S., Bindan, H., Pranoto, E., & Dharma, A. (2020). Analisa Metode Random Forest Tree dan K-Nearest Neighbor dalam Mendeteksi Kanker Serviks. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 3(2), 97–101. https://doi.org/10.9767/jikomsi.v3i2.73

Apriliani, D., Jayanti, I. D., & Renaningtias, N. (2020). Implementasi Metode AHP-TOPSIS dalam Sistem Pendukung Keputusan Penentuan Prioritas Bantuan Usaha Kecil dan Menengah di Kota Tegal. Indonesian Journal of Technology, Informatics and Science (IJTIS), 2(1), 5–11. https://doi.org/10.24176/ijtis.v2i1.5603

Cahyanti, D., Rahmayani, A., & Husniar, S. A. (2020). Analisis Performa Metode KNN pada Dataset Pasien Pengidap Kanker Payudara. Indonesian Journal of Data and Science, 1(2), 39–43. https://doi.org/10.33096/ijodas.v1i2.13

Habibah, U., & Rosyda, M. (2022). Sistem Pendukung Keputusan Penerima Bantuan Langsung Tunai Dana Desa di Pekandangan Menggunakan Metode AHP-TOPSIS. Jurnal Media Informatika Budidarma, 6(1), 404–413. https://doi.org/10.30865/mib.v6i1.3471

Indriani, A. (2020). Analisa Perbandingan Metode Naïve Bayes Classifier dan K-Nearest Neighbor Terhadap Klasifikasi Data. Sebatik, 24(1), 1–7.

Jabbar, M. A., Hasmin, E., Sunardi, Susanto, C., & Musu, W. (2022). Komparasi Algoritma Decision Tree, Naive Bayes dan KNN dalam Klasifikasi Kanker Payudara. Computer Science Research and Its Development Journal, 14(3), 258–270. https://doi.org/10.22303/csrid.14.3.2022.258-270

Lestari, E. P. (2020). Penerapan Metode K-Means Untuk Proses Penentuan Golongan Penerima Zakat (Mustahiq) di Yayasan Dana Sosial Al-Falah Malang. Institut Teknologi Nasional Malang.

Maulana, A. A., Hidayat, N., & Suprapto. (2018). Sistem Pendukung Keputusan Penentuan Penerima Bantuan Keluarga Miskin Menggunakan Metode Analytical Hierarchy Process-Technique For Order Of Preference By Similarity To Ideal Solution (AHP-TOPSIS). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10), 3890–3898.

Maulidhinah, A. T., Jannah, A., Rizkyka, E. P., Wati, K., Nugroho, A. P., & Huda, B. (2023). Analisis Penyaluran Dana Zakat Untuk Produktivitas Mustahik: Studi Pada Lembaga Amil Zakat Infaq Shadaqah Nurul Falah Surabaya. EKOMA: Jurnal Ekonomi, Manajemen, Akuntansi, 3(1), 395–414.

Putra, M. G. L., Ariyanti, W., & Cholissodin, I. (2016). Selection and Recommendation Scholarships Using AHP-SVM-TOPSIS. Journal of Information Technology and Computer Science, 1(1), 1–13. https://doi.org/10.25126/jitecs.2016111

Rizal, M. (2022). Penerapan Metode AHP dan TOPSIS untuk Penentuan Rekomendasi Calon Mustahik pada Lembaga Inisiatif Zakat Indonesia (IZI) Riau. Universitas Islam Negeri Sultan Syarif Kasim (Riau).

Singgalen, Y. A. (2023). Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW. Journal of Information System Research (JOSH), 4(4), 1343–1353. https://doi.org/10.47065/josh.v4i4.3917

Undang-undang (UU) Nomor 23 Tahun 2011 tentang Pengelolaan Zakat, (2011).

##submission.downloads##

ARTICLE Diterbitkan HISTORY

Submitted Date: 2024-05-19
Accepted Date: 2024-05-20
Published Date: 2024-06-06

Cara Mengutip

Aprianti, W., Permadi, J. ., Rhomadhona, H. ., & Amelia, N. . (2024). Implementation of KNN and AHP-TOPSIS as Recommendation System for Mustahik Selection. Brilliance: Research of Artificial Intelligence, 4(1), 192-200. https://doi.org/10.47709/brilliance.v4i1.3883