Analysis of Batrsiyia Product Sales Prediction Using Linear Regression Method
DOI:
https://doi.org/10.47709/cnahpc.v7i2.5776Keywords:
Products, Batrsiyia Products, Product Sales, Product Sales Prediction, Data Mining, Linear Regression, Rapid MinerAbstract
The rapidly growing herbal and health industry encourages the need for accurate sales planning to avoid the risk of shortages or excess stock. This research aims to predict sales of Batrsiyia products using the Linear Regression algorithm with RapidMiner tools, through analyzing historical data such as sales time, number of products sold, and unit prices to identify patterns and trends to produce accurate predictions. The results show that the Linear Regression algorithm is able to predict sales with an RMSE value of 96687030.354 +/- 0.000, and a Squared Error of 9348381838748252.000 +/- 25081062946532056.000. This approach helps companies understand sales patterns, predict future trends, and optimize stock and marketing strategies. By utilizing data mining-based prediction methods, companies can make more informed decisions in meeting customer needs, maintaining business stability, and improving operational efficiency.
Downloads
References
Anggrawan, A. (2022). Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear. Jurnal Bumigora Information Technology (BITe), 4(2), 123–132. https://doi.org/10.30812/bite.v4i2.2416
Ardhanur, I. (2025). IMPLEMENTASI ALGORITMA REGRESI LINEAR UNTUK MODEL PREDIKSI PENJUALAN DI TOKO AMANDA BROWNIES. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2), 836–845. https://doi.org/10.23960/jitet.v13i2.6337
Ardiansyah, F. R. (2024). Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Mengelompokan Penjualan Smartphone (Studi Kasus Konter Mutiara Cell). INNOVATIVE: Journal Of Social Science Research, 4(6), 1371–1379. https://doi.org/10.31004/innovative.v4i6.16415
Gooljar, S. (2023). Performance Evaluation and Comparison of a New Regression Algorithm. ArXiv, 1(15), 524–531. https://doi.org/10.5220/0012135400003541
Harahap, R. G. (2024). PENGUKURAN KOEFISIEN ABSORBSI MATERIAL ASKUSTIK DARI SERAT DAUN NANAS DAN SABUT KELAPA. Jurnal Studi Multidisipliner, 8(6), 110–116. Retrieved from https://oaj.jurnalhst.com/index.php/jsm/article/view/2184
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Irawan, S. (2024). Dinamika Struktur Aktiva, Pertumbuhan Penjualan, dan Risiko Bisnis dalam Penentuan Harga Saham dengan Pendukung Struktur Modal. KINERJA: Jurnal Manajemen Organisasi Dan Industri, 3(1), 10–20. https://doi.org/10.37481/jmoi.v3i1.117
Lubis, S., Siregar, M. A., Damanik, W. S., Siregar, I., Hasibuan, E. S., & Arif, M. (2021). Analisa Nilai Koefisien Prestasi (COP) Lemari Pembeku Yang Dihasilkan Oleh Solar Cell. MedKonsep: Konferensi Nasional Social Engineering Pol, 2(1), 252. Retrieved from http://ojs.polmed.ac.id/index.php/KONSEP2021/article/view/613
Maulana, A. Y. (2023). Peramalan Penjualan Thrift Pada Toko Klasswear Menggunakan Metode Regresi Linear Berbasis Website. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2175–2181. https://doi.org/10.36040/jati.v7i4.7442
Muhartini, A. A. (2021). ANALISIS PERAMALAN JUMLAH PENERIMAAN MAHASISWA BARU DENGAN MENGGUNAKAN METODE REGRESI LINEAR SEDERHANA. Jurnal Aisyah?: Jurnal Ilmu Kesehatan, 1(1), 17–23. https://doi.org/10.30604/jika.v7i2.1507
Muhidin, A., Danny, M., Rilvani, E., Aditiya, P., Enri, U., Maulana, I., … Jaelani, I. (2023). Algoritme Multinomial Naïve Bayes Pada Aplikasi Chatbot Layanan Informasi Berbasis Teks. JURIKOM (Jurnal Riset Komputer), 9(4), 1297–1303. Retrieved from http://djournals.com/klik/article/view/1033%0Ahttp://djournals.com/klik/article/download/1033/696%0Ahttp://repository.uin-suska.ac.id/74467/%0Ahttp://repository.uin-suska.ac.id/74467/1/LAPORAN TA PAPER RESTU RAMADHAN.pdf%0Ahttp://ojs.stmik-banjarbaru.ac.i
Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Van Le, H., Tran, V. Q., … Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering, 2(8), 1–15. https://doi.org/10.1155/2021/4832864
Silalahi, N. (2021). Analisis Korelasi Koefisien Kontingensi Pada Kondisi Faktor Sufficient Tbc Dengan Kejadian Penularan Tbc Pada Anggota Keluarga Penderita Tbc Di Wilayah Kerja Puskesmas Talun Kenas. Jurnal Penelitian Kesmasy, 3(2), 43–49. https://doi.org/10.36656/jpksy.v3i2.636
Siregar, N. N. (2021). Penerapan Data Mining Untuk Memprediksi Penggunaan Daya Listrik Pada PT.PLN (Persero) Rayon Medan Selatan Dengan Menggunakan Metode Regresi Linier Berganda. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 20(1), 20. https://doi.org/10.53513/jis.v20i1.2431
Supardi, S., Ajie, A. K., Dwiyanti, A., Ramiaji, J., Jein, K., Ramadhanti, N. A., … Meilizar, R. K. (2023). Peran Data Mining dalam Memprediksi Tingkat Penjualan Sepatu Adidas Menggunakan Metode Algoritma Regresi Linear Sederhana. Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), 4(5), 883–890. Retrieved from https://creativecommons.org/licenses/by/4.0/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Firzi Cahya Priana, Muhtajuddin Danny, Edora

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.