The Comparison of the K Mean Algorithm with the C 45 Algorithm in Dataming Applications
Balancing Precision and Speed in Data Mining Solutions
DOI:
10.47709/cnahpc.v7i1.5319Keywords:
K-Means, C4.5, Data Mining, Sales Prediction, Clustering and Classification AlgorithmsDimension Badge Record
Abstract
This research topic discusses the comparison of the K-Means and C4.5 algorithms in the application of data mining to predict aquarium sales in a company. K-Means is a clustering algorithm that functions to group data based on similarity, for example grouping customers based on frequency or type of purchase. This helps companies understand market segments and design marketing strategies accordingly. Meanwhile, C4.5 is a classification algorithm that builds decision trees based on important attributes that influence sales, such as price, season, or promotions. This algorithm is able to predict sales categories, such as increases or decreases, based on historical data. By comparing these two algorithms, the research sought to find out which algorithm is more effective in helping companies predict sales and make strategic decisions. A combination of the two can also be used, with K-Means grouping the data first, then C4.5 classifying each segment formed. These results can provide more accurate sales predictions and more effective marketing strategies. This research is important to understand the effectiveness of algorithms in data mining to improve business decision making.
Downloads
Abstract viewed = 54 times
References
Bachtiar, Lukman, and Mahradianur Mahradianur. 2023. “Analisis Data Mining Menggunakan Metode Algoritma C4.5 Menentukan Penerima Bantuan Langsung Tunai.” Jurnal Informatika 10(1):28–36. doi: 10.31294/inf.v10i1.15115.
Dewi, Kiki Rosita, Kemal Farouq Mauladi, and Masruroh. 2020. “Analisa Algoritma C4.5 Untuk Prediksi Penjualan Obat Pertanian Di Toko Dewi Sri.” Seminar Nasional Inovasi Teknologi 25:109–14.
Dewi, Ni Luh Putu Purnama, I. Nyoman Purnama, and Nengah Widya Utami. 2022. “Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara).” Jurnal Ilmiah Teknologi Informasi Asia 16(2):105. doi: 10.32815/jitika.v16i2.761.
Islahudin, Rizal Abi, Sidik Rahmatullah, Asep Afandi, and Sriyani Safitri. 2022. “Algoritma C4.5 Untuk Memprediksi Kelayakan Penerima Bantuan Pangan Non Tunai.” Jurnal Informatika 22(2):147–59. doi: 10.30873/ji.v22i2.3367.
Isnanto, Septian, and Suryarini Widodo. 2021. “Penerapan Data Mining Pada Penerimaan Mahasiswa Baru Dengan Algoritma K-Means Clustering.” Jurnal Teknik Informasi Dan Komputer (Tekinkom) 4(2):158. doi: 10.37600/tekinkom.v4i2.367.
Nas, Chairun. 2021. “Data Mining Prediksi Minat Calon Mahasiswa Memilih Perguruan Tinggi Menggunakan Algoritma C4.5.” Jurnal Manajemen Informatika (JAMIKA) 11(2):131–45. doi: 10.34010/jamika.v11i2.5506.
Nurahman, Nurahman, Agung Purwanto, and Sigit Mulyanto. 2022. “Klasterisasi Sekolah Menggunakan Algoritma K-Means Berdasarkan Fasilitas, Pendidik, Dan Tenaga Pendidik.” MATRIK?: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer 21(2):337–50. doi: 10.30812/matrik.v21i2.1411.
Permadi, Anjar, and Yudhistira Arie Wiyaja. 2023. “Pengelompokan Terbaik Menggunakan Algoritma K-Means Pada Dataset Bus Biskita Bogor.” INTERNAL (Information System Journal) 6(1):88–100. doi: 10.32627/internal.v6i1.689.
Pratiwi, Hesti, and Ari Purno Wahyu Wibowo. 2022. “Implementasi Algoritma K-Means Untuk Mengklaster Kelompok Sektor Perkebunan Di Indonesia.” JOISIE Journal Of Information System And Informatics Engineering 6(1):1–10.
Riadi, Restu, and Mesran. 2023. “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Analisa Penjualan Parfume.” Journal of Informatics, Electrical and Electronics Engineering 2(4):138–45. doi: 10.47065/jieee.v2i4.1181.
Yunus, Muhamad, Hanandriya Ramadhan, Dimas Rizki Aji, and Agus Yulianto. 2021. “Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indon[1] M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, ‘Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP),’ Paradig. - J. Komput. Dan Inform., Vol.” Paradigma - Jurnal Komputer Dan Informatika 23(2).
Kaur, Gagandeep, dan Meenu Arora. 2021. “A Comparative Study on Decision Tree Algorithms for Classification.” International Journal of Advanced Computer Science and Applications 12(6):184–90.
Patel, Jignesh, dan Preeti Patel. 2020. “Performance Analysis of C4.5 and ID3 Decision Tree Algorithm for Data Classification.” International Journal of Engineering Research and Technology 9(6):87–92.
Singh, Amandeep, Naveen Kumar, dan Aruna. 2022. “A Hybrid C4.5 Decision Tree Model with Random Forest for Predictive Analysis.” Journal of King Saud University - Computer and Information Sciences 34(3):142–50.
Zhang, Li, dan Xueping Wei. 2023. “Enhanced C4.5 Decision Tree Algorithm Based on Pruning and Feature Selection.” Journal of Big Data 10(1):1–15
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2025 Erwin Panggabean, Agustina Simangunsong, Dedi Sinaga, Agus Putra Emas Sihombing, Tri Evalina Aritonang

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.