Credit Risk Analysis on Motor Vehicle Financing Using the Kealhofer Merton Vasicek Model (KMV)
DOI:
https://doi.org/10.47709/cnahpc.v7i1.5569Keywords:
Credit Risk, Financing, Kealhofer Merton Vasicek ModelAbstract
The development of the automotive sector in Indonesia continues to show significant growth, in line with the increasing demand for motor vehicles, both cars and motorcycles. Although it has great potential, the vehicle financing sector is not without challenges, particularly related to credit risk. The Kealhofer Merton Vasicek (KMV) model will be suitable for calculating vehicle credit risk because it can predict default (failure to pay) when the borrower reaches the end of the loan term. The objective of this research is to apply the KMV model to calculate the Expected Default Frequency (EDF) value and determine the minimum credit risk. From the analysis and estimation results, the time-to-maturity equity value for motor vehicles was obtained at Rp9.616.709.886 and the time-to-maturity liability value at Rp1.865.460.114, while for cars, the equity value was obtained at Rp2.057.843.305 and the time-to-maturity liability value at Rp468.544.695. Additionally, the Expected Default Frequency (EDF) value for motor vehicles was obtained at 4,26% and the EDF value for cars at 0,01%. The results indicate that the likelihood of default experienced by Adira Finance is low, especially for cars. Therefore, Adira Finance can be stated to have sufficient capital, so the likelihood of default is not high.
Downloads
References
Afifah, S. S., Dharmawan, K., & Srinadi, I. G. A. M. (2022). Perhitungan Risiko Kredit Kpr Pada Bank Xyz Menggunakan Metode Creditrisk+. E-Jurnal Matematika, 11(2), 94. https://doi.org/10.24843/mtk.2022.v11.i02.p366
Anggoro, A. S., Mustafid, & Kartikasari, P. (2023). Pendekatan Model Kmv Merton Untuk Pengukuran Nilai Risiko Kredit Obligasi Expected Default Frequency (Edf) Dilengkapi Gui R. Jurnal Gaussian, 12(1), 92–103. https://doi.org/10.14710/j.gauss.12.1.92-103
Audyna, N. (2023). Probabilitas Kebangkrutan Obligasi Korporasi Dengan Suku Bunga Vasicek Model KMV Merton. Universitas Padjadjaran.
BI. (2024). Survei Perbankan Triwulan III 2024: Penyaluran Kredit Baru Tumbuh Positif. Bank Indonesia. https://www.bi.go.id/id/publikasi/ruang-media/news-release/Pages/sp_2623024.aspx
BPS. (2024). Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2021-2022. Badan Pusat Statistik. https://www.bps.go.id/id/statistics-table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html
Chen, Y., & Chu, G. (2014). Estimation of Default Risk Based on KMV Model—An Empirical Study for Chinese Real Estate Companies. Journal of Financial Risk Management, 03(02), 40–49. https://doi.org/10.4236/jfrm.2014.32005
Danamon. (2024). Analisis dan Pembahasan Manajemen. In Bank Danamon. Danamon.
GAIKINDO. (2024). Indonesian Automobile Industry Data. Gabungan Indistri Kendaraan Bermotor Indonesia. https://www.gaikindo.or.id/indonesian-automobile-industry-data/
Kulkarni, A., Mishra, A. K., & Thakker, J. (2019). How Good Is Merton Model At Assessing Credit Risk? National Institute of Bank Management, 0091, 6.
Malasari, D., Adam, M., Yuliani, & Hanafi, A. (2020). Rasio keuangan dan kemungkinan gagal bayar dengan metode KMV Merton pada perusahaan non keuangan di Bursa Efek Indonesia. DeReMa: Jurnal Manajemen, 15(1), 120–135.
OJK. (2024). Siaran Pers: Sektor Jasa Keuangan Terjaga Stabil di Tengah Ketidakpastian Perekonomian Global yang Masih Tinggi. Otoritas Jasa Keuangan. https://ojk.go.id/id/berita-dan-kegiatan/siaran-pers/Pages/Sektor-Jasa-Keuangan-Terjaga-Stabil-di-Tengah-Ketidakpastian-Perekonomian-Global-yang-Masih-Tinggi.aspx
Sari, I. M., Siregar, S., & Harahap, I. (2020). Manajemen Risiko Kredit bagi Bank Umum. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) 2020, 1(1), 553–557.
Siregar, M. A., Mustafid, & Santoso, R. (2018). Pengukuran Probabilitas Kebangkrutan Obligasi Korporasi Dengan Suku Bunga Cox Ingersoll Ross Model Merton (Studi Kasus Obligasi PT Indosat, Tbk) 1,2,3. Jurnal Gaussian, 7, 175–186.
Su, W. (2022). Default Distances Based on the KMV-CEV Model. 1968, 1–16.
Sunaryo. (2020). Pengaruh Volume Penawaran Saham Terhadap Risiko Sistematis Dan Implikasinya Terhadap Harga Saham: Penerapan Dengan Model Regresi Data Panel Common Effect (Studi Empiris Pada Saham-Saham Jakarta Islamic Index Di Bursa Efek Indonesia Periode Januari. Mediastima, 26(2), 135–164. https://doi.org/10.55122/mediastima.v26i2.107
Wijoyo, N. A. (2021). Probability of Default Bank Umum di Indonesia: Alternatif dalam Implementasi Sisitem Premi Deferensial. Kajian Ekonomi Dan Keuangan, 5(1), 50–73. https://doi.org/10.31685/kek.v5i1.531
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dwi Wahyuni Rambe, Fibri Rakhmawati

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.