Implementation of HSV- based Thresholding Method for Iris Detection
DOI:
10.47709/cnahpc.v3i1.939Dimension Badge Record
Abstract
Image thresholding is one of the most frequently used methods in image processing to perform digital image processing. Image thresholding has a technique that can separate the image object from its background. This is a technique that is quite good and effective for segmenting love. In this study, the threshold method used will be combined with the HSV mode for color detection. The threshold method will separate the object and the image background, while HSV will help improve the segmentation results based on the Hue, Saturation, Value values to be able to detect objects more accurately. Segmentation is carried out using the original input image without pre-processing or direct segmentation. As we know that in digital image processing, there are steps that are usually done to get a good input image, namely pre-processing. In this pre-processing stage, processes such as image conversion and image intensity changes are carried out so that the input image is better. Therefore, even though the input image is used without going through the pre-processing stage, the object can be segmented properly based on the color type of the object. The results of this segmentation can later be used for recognition and identification of image objects. The results of the test method for object segmentation achieved a color similarity level of 25%, with an accuracy rate of 75% in detecting uniform color objects. So that this method can be one of the most effective methods in segmenting image objects without pre-processing or direct thresholding
Downloads
Abstract viewed = 425 times
References
Agaputra, M. D., Wardani, K. R., & Siswanto, E. (2013). Pencarian Citra Digital Berbasiskan Konten dengan Ekstraksi Fitur HSV, ACD, dan GLCM. Jurnal Telematika, 8 (2), 8-13.
Aqthobilrobbany, A., Handayani, A. N., Lestari, D., Muladi, Asmara, R. A., & Fukuda, O. (2020). HSV Based Robot Boat Navigation System. 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). doi:10.1109/cenim51130.2020.9297915.
Hajipour, K., & Mehrdad, V. (2020). Edge Detection Of Noisy Digital Image Using Optimization Of Threshold And Self Organized Map Neural Network. Multimedia Tools and Applications, 80(4), 5067–5086. doi:10.1007/s11042-020-09942-y.
Heryanto, I. W. A., Artama, M., Segara, M. W., & Gunadi, I. G. A. (2020). Segmentasi Warna dengan Metode Thresholding. Wahana Matematika dan Sains: Jurnal Matematika, Sains, dan Pembelajarannya, 14(1), 54-64.
Houssein, E. H., Helmy, B. E., Oliva, D., Elngar, A. A., & Shaban, H. (2021). A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation. Expert Systems with Applications, 167, 114159. doi:10.1016/j.eswa.2020.114159.
Kang, C., Wu, C., & Fan, J. (2020). Entropy-Based Circular Histogram Thresholding For Color Image Segmentation. Signal, Image and Video Processing, 15(1), 129–138. doi:10.1007/s11760-020-01723-2.
Mandal, S., & Chaudhuri, S. S. (2020). Polyps Segmentation using Fuzzy Thresholding in HSV Color Space. 2020 IEEE-HYDCON. doi:10.1109/hydcon48903.2020.9242852.
Mardiah, H. S. (2020). Segmentasi Citra Untuk Pencarian Kode Warna Cat Menggunakan Metode Thershold HSV. Bulletin of Information Technology (BIT), 1(3), 134-143.
Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2020). Human Mental Search-Based Multilevel Thresholding For Image Segmentation. Applied Soft Computing, 97, 105427. doi:10.1016/j.asoc.2019.04.002.
Premana, A., Bhakti, R. M. H., & Prayogi, D. (2020). Segmentasi K-Means Clustering Pada Citra Menggunakan Ekstrasi Fitur Warna dan Tekstur. Jurnal Ilmiah Intech: Information Technology Journal of UMUS, 2(01), 89-97.
Sari, B. M. (2020). Identifikasi Tingkat Kematangan Buah Strawberry Berdasarkan Warna RGB dengan Menggunakan Metode Regionprops. TIN: Terapan Informatika Nusantara, 1(5), 225-230.
Sinaga, A. S., & Marpaung, E. (2020). Segmentasi Warna HSV Telapak Tangan Untuk Deteksi Bakteri Pada Pendemi Covid 19. Fountain of Informatics Journal, 5(3), 1-5.
Sipkens, T. A., & Rogak, S. N. (2021). Technical Note: Using K-Means To Identify Soot Aggregates In Transmission Electron Microscopy Images. Journal of Aerosol Science, 152, 105699. doi:10.1016/j.jaerosci.2020.105699.
Sitohang, B., & Sindar, A. (2020). Analisis Dan Perbandingan Metode Sobel Edge Detection Dan Prewit Pada Deteksi Tepi Citra Daun Srilangka. Jurnal Nasional Komputasi dan Teknologi Informasi, 3(3).
Sun, M., & Wei, H. (2020). An improved cuckoo search algorithm for multi-level gray-scale image thresholding. Multimedia Tools and Applications, 79(47-48), 34993–35016. doi:10.1007/s11042-020-08931-5.
Z. Liu, W. Chen, Y. Zou, and C. Hu. (2012). Regions of interest extraction-based on HSV color space. IEEE International Conference on industrial informatics (INDIN), 481–485.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2020 Fajrul Islami
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.