Rainfall Prediction in Jayapura City Area Using Long Short-Term Memory

Authors

  • Amanda Azi Program Studi Magister Informatika, Universitas Amikom Yogyakarta,Yogyakarta, Indonesia
  • Kusrini Program Studi Magister Informatika, Universitas Amikom Yogyakarta,Yogyakarta, Indonesia

DOI:

https://doi.org/10.47709/cnahpc.v7i2.5506

Keywords:

Jayapura, LSTM, MAE, Rainfall, RMSE

Abstract

Jayapura, one of Indonesia’s major fishing cities, relies heavily on accurate weather predictions to ensure the safety of its fishermen, particularly due to its significant tuna and skipjack production. This study aims to improve rainfall forecasting in Jayapura using a Long Short-Term Memory (LSTM) model, a type of artificial neural network designed for time series prediction. Accurate rainfall forecasts are crucial for reducing the risks fishermen face at sea due to sudden weather changes. Daily data from the Meteorological Station in Dok II Jayapura was collected and processed to train the LSTM model, incorporating variables such as TAVG (average temperature), RH_AVG (average relative humidity), FF_AVG (average wind speed), Pressure (air pressure), and Wind_Gust (wind gust). The model’s performance was evaluated using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), yielding low values of 0.0542 and 0.0847, respectively, indicating high prediction accuracy. The MAE reflects the average magnitude of errors, while the RMSE highlights the model’s sensitivity to larger deviations, both supporting the reliability of the LSTM approach. The findings demonstrate that LSTM models can effectively forecast rainfall in Jayapura, providing valuable information that helps fishermen plan their activities more safely and efficiently. The study concludes that LSTM is a robust tool for rainfall prediction, and the inclusion of additional meteorological variables has proven to enhance accuracy. Further research is recommended to explore other factors to improve prediction reliability.

Downloads

Download data is not yet available.

References

Ahmad, F. (2020). PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT . X. JISI: JURNAL INTEGRASI SISTEM INDUSTRI, 7(1), 31–39.

Arfan, A., & ETP, L. (2020). Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia. PETIR, 13(1), 33–43. https://doi.org/10.33322/petir.v13i1.858

Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7(November 2021), 100204. https://doi.org/10.1016/j.mlwa.2021.100204

BMKG, D. O.-D. D. D. K.-. (2024). Data Online BMKG. https://dataonline.bmkg.go.id/dataonline-home

BPS Kota Jayapura. (2024). KOTA JAYAPURA DALAM ANGKA (Jayapura Municipality in Figures) 2024.

Dada, E. G., Yakubu, H. J., & Oyewola, D. O. (2021). Artificial Neural Network Models for Rainfall Prediction. European Journal of Electrical Engineering and Computer Science, 5(2), 30–35. https://doi.org/10.24018/ejece.2021.5.2.313

Endalie, D., Haile, G., & Taye, W. (2022). Deep learning model for daily rainfall prediction: case study of Jimma, Ethiopia. Water Supply, 22(3), 3448–3461. https://doi.org/10.2166/WS.2021.391

Farikhul Firdaus, R., & Paputungan, I. V. (2022). Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory. Jurnal Penelitian Inovatif, 2(3), 453–460. https://doi.org/10.54082/jupin.99

Faris Nasirudin, & Abdullah Ahmad dzikrullah. (2023). Pemodelan Harga Cabai Indonesia dengan Metode Seasonal ARIMAX. Jurnal Statistika Dan Aplikasinya, 7(1), 105–115. https://doi.org/10.21009/jsa.07110

Google Colab_Rainfall Prediction LSTM. (n.d.). https://colab.research.google.com/drive/1M_mzydEy_qe6Q7Bvqj-OyGbh_0k7aYrV?usp=sharing

Hamirsa, M. H., & Rumita, R. (1927). USULAN PERENCANAAN PERAMALAN ( FORECASTING ) DAN SAFETY STOCK PERSEDIAAN SPARE PART BUSI CHAMPION TYPE RA7YC - 2 ( EV - 01 / EW - 01 / 2 ) MENGGUNAKAN METODE TIME SERIES PADA PT TRIANGLE MOTORINDO SEMARANG. 2.

Haq, D. Z., Rini Novitasari, D. C., Hamid, A., Ulinnuha, N., Arnita, Farida, Y., Nugraheni, R. D., Nariswari, R., Ilham, Rohayani, H., Pramulya, R., & Widjayanto, A. (2021). Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data. Procedia Computer Science, 179(2019), 829–837. https://doi.org/10.1016/j.procs.2021.01.071

Hutajulu, H., Indahyani, R., Ubra, J., Putra, R. C. W., & Samosir, R. K. (2024). Analisis Nilai-nilai Kelembagaan Lokal Masyarakat Pesisir dalam Pengelolaan Perikanan Tuna Berkelanjutan di Kota Jayapura. Indonesian Research Journal on Education Web:, 4(2021), 1087–1092.

Khan, M. M. R., Siddique, M. A. B., Sakib, S., Aziz, A., Tasawar, I. K., & Hossain, Z. (2020). Prediction of Temperature and Rainfall in Bangladesh Using Long Short Term Memory Recurrent Neural Networks. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 - Proceedings. https://doi.org/10.1109/ISMSIT50672.2020.9254585

Maurizka, I. S., & Adiwibowo, S. (2021). Fishermen Adaptation Strategies Facing the Impact of Climate Change (Case?: Fishermen of Pecakaran Village , Wonokerto District , Pekalongan Regency , Central Java ). Jurnal Sains Komunikasi Dan Pengembangan Masyarakat, 05(04), 496–508.

Mayori, A., & Tresnawati, Y. (2024). Implementasi Algoritma K-Means Clustering Pada Penjualan Makanan (Studi Kasus?: Ayam Betutu Warung Wardana). AGENTS: Journal of Artificial Intelligence and Data Science, 4(1), 1–12. https://tin.fst.uin-alauddin.ac.id/jurnal/index.php/agents/article/view/72

Musfiroh, M., Novitasari, D. C. R., Intan, P. K., & Wisnawa, G. G. (2023). Penerapan Metode Principal Component Analysis (PCA) dan Long Short-Term Memory (LSTM) dalam Memprediksi Prediksi Curah Hujan Harian. Building of Informatics, Technology and Science (BITS), 5(1), 1–11. https://doi.org/10.47065/bits.v5i1.3114

Ouma, Y. O., Cheruyot, R., & Wachera, A. N. (2022). Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin. Complex and Intelligent Systems, 8(1), 213–236. https://doi.org/10.1007/s40747-021-00365-2

Pelangi, K. C., Alhamad, A., Sahi, S., Gorontalo, U. I., & Square, M. L. (2021). Prediksi Jumlah Tunggakan Pembayaran Rekening Air Menggunakan Metode Least Square. Jurnal Nasional CosPh, 5(2), 31–35. https://www.cosphijournal.unisan.ac.id/index.php/cosphihome/article/view/113/63

Pham, B. T., Le, L. M., Le, T.-T., Bui, K.-T. T., Le, V. M., Ly, H.-B., & Prakash, I. (2020). Development of advanced artificial intelligence models for daily rainfall prediction. Atmospheric Research, 237, 104845. https://doi.org/10.1016/j.atmosres.2020.104845

Robeson, S. M., & Willmott, C. J. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE, 18(2 February), 1–8. https://doi.org/10.1371/journal.pone.0279774

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306

Surta, W., Basuki, K. T., Negara, E. S., & Kunang, Y. N. (2023). Rainfall Prediction in Palembang City Using the GRU and LSTM methods. Journal of Data Science, 4(2). http://eprints.intimal.edu.my/1730/

Yudanegara, R. A., Astutik, D., Hernandi, A., Soedarmodjo, T. P., & Alexander, E. (2021). PENGGUNAAN METODE INVERSE DISTANCE WEIGHTED ( IDW ) UNTUK PEMETAAN ZONA NILAI TANAH ( STUDI KASUS?: KELURAHAN GEDONG MENENG , BANDAR LAMPUNG ). Jurnal “ELIPSOIDA,” 04(02).

Downloads

Published

2025-04-04

How to Cite

Azi, A., & Kusrini, K. (2025). Rainfall Prediction in Jayapura City Area Using Long Short-Term Memory. Journal of Computer Networks, Architecture and High Performance Computing, 7(2), 433–439. https://doi.org/10.47709/cnahpc.v7i2.5506

Similar Articles

You may also start an advanced similarity search for this article.