ac

Embracing Nature's Therapeutic Potential: Herbal Medicine

Authors

DOI:

10.47709/ijmdsa.v2i1.2620

Keywords:

Ecotherapy, horticulture therapy, forest bathing, wilderness therapy, nature meditation, holistic wellness, human well-being, herbal medicine, and modern healthcare are all examples of nature-based therapies.

Dimension Badge Record



Abstract

This study investigates the significant relationship between nature and human well-being, proposing for the incorporation of nature-based therapies into modern healthcare procedures. In a society dominated by technology and fast-paced living, the need to reconnect with nature and embrace its therapeutic power has never been more pressing. The paper emphasizes the inherent connection between humans and the natural environment, drawing on evolutionary history and scientific research that indicate nature's positive impact on mental, emotional, and physical health. The concept of nature-based therapies, such as ecotherapy, horticultural therapy, forest bathing, wilderness therapy, and nature meditation, lies at the heart of this holistic approach to healing. Each of these therapies uses natural ingredients to promote healing and well-being, responding to individual requirements and developing a sense of connection with the natural environment. The report delves into the unique benefits of each nature-based therapy, emphasizing its usefulness in lowering stress, increasing mood, enhancing cognitive function, and strengthening the immune system. This comprehensive approach to healthcare, with a focus on prevention, personalized care, and root-cause investigation, is in sync with the concepts of nature-based therapies. The incorporation of herbal medicine into modern healthcare supplements this approach by providing natural and gentle healing therapies that target the full person—mind, body, and spirit. The report also underlines the significance of the biophilia concept, which emphasizes humans' inherent affinity for nature. Embracing nature's therapeutic potential not only increases personal well-being but also instills a sense of responsibility for environmental protection and sustainability. The greater connection individuals create with nature through nature-based therapies fosters a heightened respect for the natural environment, encouraging a dedication to safeguard it for future generations. As the future of healthcare develops, embracing nature's therapeutic potential serves as a light of hope and transformation. The incorporation of nature-based therapies into current healthcare procedures provides an inclusive and holistic approach that improves conventional treatments, empowers patients in their healing path, and promotes general well-being.

Google Scholar Cite Analysis
Abstract viewed = 2579 times

References

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., ... & Greenblatt, J. F. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637-643.

LaCount, D. J., Vignali, M., Chettier, R., Phansalkar, A., Bell, R., Hesselberth, J. R., ... & Hughes, R. E. (2005). A protein interaction network of the malaria parasite Plasmodium falciparum. Nature, 438(7064), 103-107.

Komurov, K., & White, M. (2007). Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular systems biology, 3(1), 110.

Strong, M., & Eisenberg, D. (2007). The protein network as a tool for finding novel drug targets. Systems Biological Approaches in Infectious Diseases, 191-215.

Pu, S., Vlasblom, J., Emili, A., Greenblatt, J., & Wodak, S. J. (2007). Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics, 7(6), 944-960.

Collins, S. R., Miller, K. M., Maas, N. L., Roguev, A., Fillingham, J., Chu, C. S., ... & Krogan, N. J. (2007). Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 446(7137), 806-810.

Jones, S., & Thornton, J. M. (1996). Principles of protein-protein interactions. Proceedings of the National Academy of Sciences, 93(1), 13-20.

Conte, L. L., Chothia, C., & Janin, J. (1999). The atomic structure of protein-protein recognition sites. Journal of molecular biology, 285(5), 2177-2198.

Cheng, A. C., Coleman, R. G., Smyth, K. T., Cao, Q., Soulard, P., Caffrey, D. R., ... & Huang, E. S. (2007). Structure-based maximal affinity model predicts small-molecule druggability. Nature biotechnology, 25(1), 71-75.

Smith, R. D., Hu, L., Falkner, J. A., Benson, M. L., Nerothin, J. P., & Carlson, H. A. (2006). Exploring protein–ligand recognition with Binding MOAD. Journal of Molecular Graphics and Modelling, 24(6), 414-425.

Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature reviews Drug discovery, 1(9), 727-730.

Marsters Jr, J. C., McDowell, R. S., Reynolds, M. E., Oare, D. A., Somers, T. C., Stanley, M. S., ... & Bumier, J. P. (1994). Benzodiazepine peptidomimetic inhibitors of farnesyltransferase. Bioorganic & Medicinal Chemistry, 2(9), 949-957.

Zobel, K., Wang, L., Varfolomeev, E., Franklin, M. C., Elliott, L. O., Wallweber, H. J., ... & Deshayes, K. (2006). Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS chemical biology, 1(8), 525-533.

Spencer, R. W. (1998). High?throughput screening of historic collections: Observations on file size, biological targets, and file diversity. Biotechnology and bioengineering, 61(1), 61-67.

Cochran, A. G. (2000). Antagonists of protein–protein interactions. Chemistry & biology, 7(4), R85-R94.

Clackson, T., & Wells, J. A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science, 267(5196), 383-386.

Clackson, T., Ultsch, M. H., Wells, J. A., & de Vos, A. M. (1998). Structural and functional analysis of the 1: 1 growth hormone: receptor complex reveals the molecular basis for receptor affinity. Journal of molecular biology, 277(5), 1111-1128.

Muller, Y. A., Li, B., Christinger, H. W., Wells, J. A., Cunningham, B. C., & De Vos, A. M. (1997). Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proceedings of the National Academy of Sciences, 94(14), 7192-7197.

Thanos, C. D., DeLano, W. L., & Wells, J. A. (2006). Hot-spot mimicry of a cytokine receptor by a small molecule. Proceedings of the National Academy of Sciences, 103(42), 15422-15427.

Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Hot spots—A review of the protein–protein interface determinant amino?acid residues. Proteins: Structure, Function, and Bioinformatics, 68(4), 803-812.

DeLano, W. L., Ultsch, M. H., de, A. M., Vos, N., & Wells, J. A. (2000). Convergent solutions to binding at a protein-protein interface. Science, 287(5456), 1279-1283.

Sidhu, S. S., Lowman, H. B., Cunningham, B. C., & Wells, J. A. (2000). [21] Phage display for selection of novel binding peptides. In Methods in enzymology (Vol. 328, pp. 333-IN5). Academic Press.

Wrighton, N. C., Farrell, F. X., Chang, R., Kashyap, A. K., Barbone, F. P., Mulcahy, L. S., ... & Dower, W. J. (1996). Small peptides as potent mimetics of the protein hormone erythropoietin. Science, 273(5274), 458-463.

Livnah, O., Stura, E. A., Johnson, D. L., Middleton, S. A., Mulcahy, L. S., Wrighton, N. C., ... & Wilson, I. A. (1996). Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 Å. Science, 273(5274), 464-471.

Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chemistry & biology, 21(9), 1102-1114.

Yin, H., & Hamilton, A. D. (2005). Strategies for targeting protein–protein interactions with synthetic agents. Angewandte Chemie International Edition, 44(27), 4130-4163.

Fry, D. C. (2006). Protein–protein interactions as targets for small molecule drug discovery. Peptide Science: Original Research on Biomolecules, 84(6), 535-552.

Arkin, M. (2005). Protein–protein interactions and cancer: small molecules going in for the kill. Current opinion in chemical biology, 9(3), 317-324.

Arkin, M. R., Randal, M., DeLano, W. L., Hyde, J., Luong, T. N., Oslob, J. D., ... & Braisted, A. C. (2003). Binding of small molecules to an adaptive protein–protein interface. Proceedings of the National Academy of Sciences, 100(4), 1603-1608.

Braisted, A. C., Oslob, J. D., Delano, W. L., Hyde, J., McDowell, R. S., Waal, N., ... & Raimundo, B. C. (2003). Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. Journal of the American Chemical Society, 125(13), 3714-3715.

Raimundo, B. C., Oslob, J. D., Braisted, A. C., Hyde, J., McDowell, R. S., Randal, M., ... & Arkin, M. R. (2004). Integrating fragment assembly and biophysical methods in the chemical advancement of small-molecule antagonists of IL-2: An approach for inhibiting protein? protein interactions. Journal of medicinal chemistry, 47(12), 3111-3130.

Tilley, J. W., Chen, L., Fry, D. C., Emerson, S. D., Powers, G. D., Biondi, D., ... & Ju, G. (1997). Identification of a small molecule inhibitor of the IL-2/IL-2R? receptor interaction which binds to IL-2. Journal of the American Chemical Society, 119(32), 7589-7590.

Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N., & Garcia, K. C. (2005). The structure of interleukin-2 complexed with its alpha receptor. Science, 308(5727), 1477-1480.

Thanos, C. D., Randal, M., & Wells, J. A. (2003). Potent small-molecule binding to a dynamic hot spot on IL-2. Journal of the American Chemical Society, 125(50), 15280-15281.

Emerson, S. D., Palermo, R., Liu, C. M., Tilley, J. W., Chen, L., Danho, W., ... & Fry, D. C. (2003). NMR characterization of interleukin?2 in complexes with the IL?2R? receptor component, and with low molecular weight compounds that inhibit the IL?2/IL?R? interaction. Protein science, 12(4), 811-822.

Kuntz, I. D., Chen, K., Sharp, K. A., & Kollman, P. A. (1999). The maximal affinity of ligands. Proceedings of the National Academy of Sciences, 96(18), 9997-10002.

Lee, L. P., & Tidor, B. (2001). Optimization of binding electrostatics: charge complementarity in the barnase?barstar protein complex. Protein Science, 10(2), 362-377.

Midelfort, K. S., Hernandez, H. H., Lippow, S. M., Tidor, B., Drennan, C. L., & Wittrup, K. D. (2004). Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. Journal of molecular biology, 343(3), 685-701.

Jm, A. (1998). The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322-1326.

Meadows, R. P., Harlan, J. E., Shuker, S. B., Chang, B. S., Minn, A. J., Thompson, C. B., ... & Yoon, H. S. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of Apoptosis.

Downloads

ARTICLE Published HISTORY

Submitted Date: 2023-08-03
Accepted Date: 2023-08-03
Published Date: 2023-08-05