PERBANDINGAN KINERJA ALGORITMA RANDOM FOREST CLASSIFIER DAN LIGHTGBM CLASSIFIER UNTUK PREDIKSI PENYAKIT JANTUNG
DOI:
10.47709/dsi.v3i2.3831Keywords:
algoritma random florest classifier, lightgbm classifier, pneyakit jantung, prediksiDimension Badge Record
Abstract
Penyakit jantung merupakan masalah kesehatan serius yang dapat dicegah dan diobati. Dengan menjaga gaya hidup sehat, melakukan pemeriksaan kesehatan secara rutin, dan mengikuti anjuran dokter[1], risiko penyakit jantung dapat dikurangi. Random Forest Classifier (RFC) bagaikan hutan pohon keputusan yang bekerja sama untuk menghasilkan prediksi yang lebih jitu. Algoritma ini tergolong handal dan fleksibel, mampu menangani berbagai tugas klasifikasi dan regresi. Kelebihannya, RFC menawarkan akurasi tinggi, tahan terhadap overfitting, dan mudah diinterpretasikan[2]. RFC adalah algoritma machine learning yang kuat dengan banyak keunggulan, namun perlu dipertimbangkan pula keterbatasannya dalam hal komputasi dan fleksibilitas[3]. LightGBM merupakan algoritma machine learning yang kuat dan efisien untuk klasifikasi dan regresi. Kecepatan, akurasi, dan kemudahan penggunaannya menjadikannya pilihan yang menarik untuk berbagai aplikasi[4]. Dari hasil yang didapat dari penelitian ini adalah metode RFC dan LightGBM dapat disimpulkan bahwa metode RFC merupakan metode yang tergolong efektif dalam analisis penyakit jantung dengan akurasi prediksi dari model adalah 95,37%., dapat dikatakan bahwa metode Random Florest Classifier cocok untuk melakukan analisis penyakit jantung bedasarkan dataset yang ada.
Abstract viewed = 329 times
Downloads
ARTICLE Published HISTORY
Issue
Section
License
Copyright (c) 2024 Data Sciences Indonesia (DSI)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.