Sentiment Analysis of Indonesia Covid-19 Vaccine on Twitter Using Naïve Bayes Classifier
DOI:
10.47709/dsi.v3i2.2959Keywords:
Analisis Sentimen, Covid-19, Naive Bayes Classifier, Python, Vaksin CovidDimension Badge Record
Abstract
Analisis sentimen merupakan suatu teknik untuk menggali informasi berupa pandangan (sentimen) seseorang terhadap suatu isu atau peristiwa. Analisis sentimen dapat dilakukan pada media sosial Twitter dengan memanfaatkan Tweet dari pengguna dengan menghasilkan klasifikasi berupa penilaian positif, negatif atau netral. Salah satu topik yang bisa dianalisis adalah program vaksinasi COVID-19. Dengan banyaknya jenis atau merek dagang pada vaksin, hal ini menimbulkan permasalahan terkait dengan beragamnya opini masyarakat terhadap vaksin tersebut. Penelitian ini bertujuan untuk mengetahui keakuratan metode yang digunakan terhadap hasil klasifikasi pada analisis sentimen masyarakat mengenai vaksin di media sosial Twitter. Metode yang digunakan dalam penelitian ini adalah Naive Bayes Classifier. Penerapan metode ini digunakan pada dataset yang diperoleh dengan melakukan crawling pada data tweet terkait topik vaksin covid-19. Jumlah dataset yang berhasil diperoleh sebanyak 8000+ tweet mulai tanggal 15 hingga 24 Desember dengan proses pengambilan manual karena keterbatasan pengambilan tweet. Hasil akurasi metode Naive Bayes Classifier sebesar 0,93 (93%) dengan perolehan klasifikasi jumlah tweet berlabel positif 2275 (60,2%), negatif 201 (5,3%), dan netral 1304 (34,5%). ). Berdasarkan akurasi tinggi yang dihasilkan dari penerapan metode NBC pada penelitian ini, maka metode NBC sangat dipertimbangkan untuk mengklasifikasikan label untuk analisis sentimen pada topik vaksin covid-19.
Abstract viewed = 82 times