Advancing Healthcare through AI: A Comprehensive Review of Cybersecurity Challenges and Information Access Strategies
DOI:
10.47709/ijmdsa.v3i4.5206Keywords:
Healthcare AI, Healthcare AI diagnostics, Block chain, Healthcare data breaches, AI bias, Security, Cloud protection, Regulation and Compliance, Data privacy, Information exchange, Digital healthDimension Badge Record
Abstract
Where Artificial Intelligence is most active today, there are quite a few applications of AI in the sphere of healthcare – never before have diagnostics, treatment, decision making have been so precise, effective, and individual. However in the actual application of artificial intelligence in healthcare systems, one is bound to encounter a number of issues such as cybersecurity and issues to do with secure access to information. The most vulnerable type of personal health information in this regard is the electronic personal health information as patient data can be hacked though data breach, ransom ware, or alteration of the algorithm used by the AI system to the detriment of the patient in question and that of the system in general. Further, there is an enforceable obligation for integrated and smart access to knowledge for clinicians and researchers and strong patient demand for patient protection and patient data privacy. In this opinion presentation, this review looks at the two elements of cybersecurity conflict as well as information availability in an AI-focused healthcare environment. They announce threats of raised levels of security risks, network vulnerabilities, and data and algorithms manipulation. The paper also includes the possibility of combating such challenges, such as; AI security tools, encryption and authentication, and integrating federated learning, the block chain, and priory-preserving AI. Further, it has recognized the importance of the expansion of consideration about how data is passed from one entity to another with no disruptions, the patient-level approach to data management, and cybersecurity training for the, respectively, healthcare workforce.
Abstract viewed = 53 times
References
Khan, R., Zainab, H., Khan, A. H., & Hussain, H. K. (2024). Advances in Predictive Modeling: The Role of Artificial Intelligence in Monitoring Blood Lactate Levels Post-Cardiac Surgery. International Journal of Multidisciplinary Sciences and Arts, 3(4), 140-151.
Sheldon N. This more powerful version of Alpha Go learns on its own. Wired October 2017. https://www.wired.com/story/this-more-powerful-version-of-alphago-learns-on-its-own/
Silver D, Schrittwieser J, Simonyan K et al. Mastering the game of Go without human knowledge. Nature 550(7676):354-359, 2017 Oct 18.
Neoaz, N. (2024). Role of Artificial Intelligence in Enhancing Information Assurance. BULLET: Jurnal Multidisiplin Ilmu, 3(5), 749-758.
Information Week. It’s about augmented intelligence not artificial intelligence. 4/5/2018 https://www.informationweek.com/big-data/ai-machine-learning/its-about-augmented-intelligence-notartificial-intelligence/a/d-id/1331460
Khan, M., Shiwlani, A., Qayyum, M. U., Sherani, A. M. K., & Hussain, H. K. (2024). AI-powered healthcare revolution: an extensive examination of innovative methods in cancer treatment. BULLET: Jurnal Multidisiplin Ilmu, 3(1), 87-98.
National Library of Medicine. Yearly citation totals from 2017 MEDLINE/PubMed Baseline. https://www.nlm.nih.gov/bsd/licensee/2017_stats/2017_Totals.html
Collins FS. The right drug at the right dose for the right person. In The Language of Life, Collins FS, New York, Harper Collins Publishers 2010, pp. 231-250.
Shiwlani, A., Khan, M., Sherani, A. M. K., & Qayyum, M. U. (2023). Synergies of AI and Smart Technology: Revolutionizing Cancer Medicine, Vaccine Development, and Patient Care. International Journal of Social, Humanities and Life Sciences, 1(1), 10-18.
Hwang DK, Hsu CC, Chang KJ et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 9(1):232-245, 2019 Jan 1.
Sherani, A. M. K., Khan, M., Qayyum, M. U., & Hussain, H. K. (2024). Synergizing AI and Healthcare: Pioneering Advances in Cancer Medicine for Personalized Treatment. International Journal of Multidisciplinary Sciences and Arts, 3(1), 270-277.
Rodriquez-Ruiz A, Lang K, Gubern-Merida A et al. Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists. J Natl Cancer Inst. 2019 Sep 1; 11(9):916- 922.
Shiwlani, A., Khan, M., Sherani, A. M. K., Qayyum, M. U., & Hussain, H. K. (2024). REVOLUTIONIZING HEALTHCARE: THE IMPACT OF ARTIFICIAL INTELLIGENCE ON PATIENT CARE, DIAGNOSIS, AND TREATMENT. JURIHUM: Jurnal Inovasi dan Humaniora, 1(5), 779-790.
Sensmeier J. Harnessing the power of artificial intelligence. Nrsg Mgt 48(11): 14-19, 2017 Nov.
Wartman SA, Combs CD. Reimagining medical education in the age of AI. AMA J Ethics 21(2):E146- 152, 2019 Feb 1.
Nasir, S., Zainab, H., & Hussain, H. K. (2024). Artificial-Intelligence Aerodynamics for Efficient Energy Systems: The Focus on Wind Turbines. BULLET: Jurnal Multidisiplin Ilmu, 3(5), 648-659.
Sahibzada, S., Nasir, S., Malik, F. S., & Lodhi, S. K. (2024). AI-Driven Aerodynamic Design Optimization for High-Efficiency Wind Turbines: Enhancing Flow Dynamics and Maximizing Energy Output. European Journal of Science, Innovation and Technology, 4(6), 47-53.
J. Frade, T. Pereira, J. Morgado, F. Silva, C. Freitas, J. Mendes, E. Negrão, B. F. de Lima, M. C. D. Silva, A. J. Madureira, I. Ramos, J. L. Costa, V. Hespanhol, A. Cunha, and H. P. Oliveira, ‘‘Multiple instance learning for lung pathophysiological findings detection using CT scans,’’ Med. Biol. Eng. Comput., vol. 60, no. 6, pp. 1569–1584, Jun. 2022
Khan, A. H., Zainab, H., Khan, R., & Hussain, H. K. (2024). Deep Learning in the Diagnosis and Management of Arrhythmias. Journal of Social Research, 4(1).
A. Raza, K. P. Tran, L. Koehl, and S. Li, ‘‘Designing ECG monitoring healthcare system with federated transfer learning and explainable AI,’’ Knowl.-Based Syst., vol. 236, Jan. 2022, Art. no. 107763.
D. Vale, A. El-Sharif, and M. Ali, ‘‘Explainable artificial intelligence (XAI) post-hoc explainability methods: Risks and limitations in nondiscrimination law,’’ AI Ethics, early access, pp. 1–12, Mar. 2022, doi: 10.1007/s43681-022-00142-y.
Qayyum, M. U., Sherani, A. M. K., Khan, M., Shiwlani, A., & Hussain, H. K. (2024). Using AI in Healthcare to Manage Vaccines Effectively. JURIHUM: Jurnal Inovasi dan Humaniora, 1(6), 841-854.
F. Milletari, N. Navab, and S.-A. Ahmadi, ‘‘V-Net: Fully convolutional neural networks for volumetric medical image segmentation,’’ 2016, arXiv: 1606.04797
K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778
Neoaz, N. (2024). Cybersecurity and Information Assurance: Bridging the Gap. International Journal of Social, Humanities and Life Sciences, 2(1), 37-46.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet: A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248–255.
Zainab, H., Khan, A. H., Khan, R., & Hussain, H. K. (2024). Integration of AI and Wearable Devices for Continuous Cardiac Health Monitoring. International Journal of Multidisciplinary Sciences and Arts, 3(4), 123-139.
W. Zhang, F. Liu, L. Luo, and J. Zhang, ‘‘Predicting drug side effects by multi-label learning and ensemble learning,’’ BMC Bioinf., vol. 16, no. 1, pp. 1–11, Dec. 2015.
Sherani, A. M. K., Qayyum, M. U., Khan, M., Shiwlani, A., & Hussain, H. K. (2024). Transforming Healthcare: The Dual Impact of Artificial Intelligence on Vaccines and Patient Care. BULLET: Jurnal Multidisiplin Ilmu, 3(2), 270-280.
G. Yang, F. Raschke, T. R. Barrick, and F. A. Howe, ‘‘Manifold learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering,’’ Magn. Reson. Med., vol. 74, no. 3, pp. 868–878, Sep. 2015.
Khan, A. H., Zainab, H., Khan, R., & Hussain, H. K. (2024). Implications of AI on Cardiovascular Patients’ Routine Monitoring and Telemedicine. BULLET: Jurnal Multidisiplin Ilmu, 3(5), 621-637.
Khan, M., Shiwlani, A., Qayyum, M. U., Sherani, A. M. K., & Hussain, H. K. (2024). Revolutionizing Healthcare with AI: Innovative Strategies in Cancer Medicine. International Journal of Multidisciplinary Sciences and Arts, 3(1), 316-324.
Shah, H. H. (2024). Advancements in Machine Learning Algorithms: Creating a New Era of Professional Predictive Analytics for Increased Effectiveness of Decision Making. BULLET: Jurnal Multidisiplin Ilmu, 3(3), 457-476.
D. A. Kaji, J. R. Zech, J. S. Kim, S. K. Cho, N. S. Dangayach, A. B. Costa, and E. K. Oermann, ‘‘An attention based deep learning model of clinical events in the intensive care unit,’’ PLoS ONE, vol. 14, no. 2, Feb. 2019, Art. no. e0211057.
B. Shickel, T. J. Loftus, L. Adhikari, T. Ozrazgat-Baslanti, A. Bihorac, and P. Rashidi, ‘‘DeepSOFA: A continuous acuity score for critically ill patients using clinically interpretable deep learning,’’ Sci. Rep., vol. 9, no. 1, pp. 1–12, Dec. 2019.
H. Hu, A. Xiao, S. Zhang, Y. Li, X. Shi, T. Jiang, L. Zhang, L. Zhang, and J. Zeng, ‘‘DeepHINT: Understanding HIV-1 integration via deep learning with attention,’’ Bioinformatics, vol. 35, no. 10, pp. 1660–1667, May 2019
S. Rabiul Islam, W. Eberle, S. Bundy, and S. K. Ghafoor, ‘‘Infusing domain knowledge in AI-based ‘black box’ models for better explainability with application in bankruptcy prediction,’’ 2019, arXiv:1905.11474.
G. B. Moody and R. G. Mark, ‘‘The impact of the MIT-BIH arrhythmia database,’’ IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, May 2001.
A. Shoughi and M. B. Dowlatshahi, ‘‘A practical system based on CNNBLSTM network for accurate classification of ECG heartbeats of MITBIH imbalanced dataset,’’ in Proc. 26th Int. Comput. Conf., Comput. Soc. Iran (CSICC), Mar. 2021, pp. 1–6.
Neoaz, N. (2024). A Comprehensive Review of Information Assurance in Cloud Computing Environments. BULLET: Jurnal Multidisiplin
Downloads
ARTICLE Published HISTORY
Issue
Section
License
Copyright (c) 2024 Hafiz Abdul Rouaf

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.