Integrating AI in Healthcare: Advancements in Petroleum Fraud Detection and Innovations in Herbal Medicine for Enhanced Cancer Treatment Approaches
DOI:
10.47709/ijmdsa.v3i4.4810Keywords:
Key words: Healthcare, artificial intelligence (AI), fraud detection, machine learning, herbal medicine, customized medicine, data privacy, predictive analytics, standardization, interdisciplinary cooperation, cross-industry innovation, and ethical considerationsDimension Badge Record
Abstract
Artificial intelligence (AI) is transforming a number of industries, such as healthcare, detecting petroleum fraud, and herbal medicine. AI solves difficult problems and opens up new avenues for growth. This paper examines how AI has revolutionized several sectors and identifies opportunities and synergies for the future. AI is improving administrative efficiency, tailored treatment, and diagnostics in the healthcare industry. Natural language processing and sophisticated machine learning models are enhancing the precision of diagnoses, customizing care, and streamlining hospital operations. To guarantee responsible integration, however, ethical issues and data protection issues need to be taken into account. Artificial intelligence is proving to be a vital tool in the fight against petroleum fraud, particularly in the areas of financial misreporting and fuel adulteration. Real-time monitoring systems and machine learning algorithms improve fraud detection, safeguard financial assets, and guarantee regulatory compliance. AI is helping to close the knowledge gap between current science and traditional herbal treatment. Artificial Intelligence enhances the efficacy, safety, and standardization of herbal remedies by evaluating plant components and forecasting their therapeutic effects. The significance of herbal treatments in conventional healthcare is strengthened by this integration, which also holds potential for novel treatment advancements. Prospects for the future include maintaining funding for AI research, tackling moral and legal issues, encouraging interdisciplinary cooperation, and raising public awareness. AI may be fully utilized by implementing these tactics, which will advance and enhance results in the fields of herbal medicine, fraud detection, and healthcare. All things considered, artificial intelligence (AI) is a disruptive force that can alter methods, improve efficiencies, and open up new avenues for research. These fields' futures will be shaped by its sustained development and prudent application, which will also help improve technology and healthcare more broadly.
Abstract viewed = 88 times
References
N. Cunningham. The 10 worst energy-related disasters of modern times. https://oilprice.com/Energy/Coal/ Coal-The-Worlds-Deadliest-Source-Of-Energy.html, last accessed on 08/10/20
N. E. Institution. Chernobyl accident and its consequences. https://www.nei.org/resources/factsheets/chernobyl-accident-and-its-consequences, last accessed on 04/03/21
S. Institute. Confirmation of a coordinated attack on the Ukrainian power grid. https://www.sans.org/blog/ confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid/, last accessed on 01/01/21.
N. E. Services. Energy theft and fraud reduction. Https: //www.smart-energy.com/industry-sectors/energy-grid-management/ energy-theft-and-fraud-reduction/, last accessed on 02/11/21
Husnain, A., Alomari, G., & Saeed, A. AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.
M. V. Barros, R. Salvador, C. M. Piekarski, A. C. de Francisco, and F. M. C. S. Freire, “Life cycle assessment of electricity generation: a review of the characteristics of existing literature,” The International Journal of Life Cycle Assessment, vol. 25, no. 1, pp. 36–54, 2020.
B. L. Lee, C. Wilson, P. Simshauser, and E. Majiwa, “Deregulation, efficiency and policy determination: An analysis of australia’s electricity distribution sector,” Energy Economics, p. 105210, 2021.
Zeb, S., Nizamullah, F. N. U., Abbasi, N., & Fahad, M. (2024). AI in Healthcare: Revolutionizing Diagnosis and Therapy. International Journal of Multidisciplinary Sciences and Arts, 3(3).
J. D. Hunt, E. Byers, Y. Wada, S. Parkinson, D. E. Gernaat, S. Langan, D. P. van Vuuren, and K. Riahi, “Global resource potential of seasonal pumped hydropower storage for energy and water storage,” Nature communications, vol. 11, no. 1, pp. 1–8, 2020
Zeb, S., Nizamullah, F. N. U., Abbasi, N., & Qayyum, M. U. (2024). Transforming Healthcare: Artificial Intelligence's Place in Contemporary Medicine. BULLET: Jurnal Multidisiplin Ilmu, 3(4).
T. Azar, A. Khamis, N. A. Kamal, and B. Galli, “Short term electricity load forecasting through machine learning,” in Joint European-US Workshop on Applications of Invariance in Computer Vision. Springer, 2020, pp. 427–437.
Lodhi, S. K., Hussain, I., & Gill, A. Y. (2024). Artificial Intelligence: Pioneering the Future of Sustainable Cutting Tools in Smart Manufacturing. BIN: Bulletin of Informatics, 2(1), 147-162.
Abbasi, N., Nizamullah, F. N. U., & Zeb, S. (2023). AI in Healthcare: Integrating Advanced Technologies with Traditional Practices for Enhanced Patient Care. BULLET: Jurnal Multidisiplin Ilmu, 2(3), 546-556.
F. Leach, G. Kalghatgi, R. Stone, and P. Miles, “The scope for improving the efficiency and environmental impact of internal combustion engines,” Transportation engineering, p. 100005, 2020.
Abbasi, N., Nizamullah, F. N. U., & Zeb, S. (2023). AI IN HEALTHCARE: USING CUTTING-EDGE TECHNOLOGIES TO REVOLUTIONIZE VACCINE DEVELOPMENT AND DISTRIBUTION. JURIHUM: Jurnal Inovasi dan Humaniora, 1(1), 17-29.
Valli, L. N. (2024). A succinct synopsis of predictive analytics for fraud detection and credit scoring in BFSI. JURIHUM: Jurnal Inovasi dan Humaniora, 2(2), 200-213.
S. Wang, D. Wang, Z. Yu, X. Dong, S. Liu, H. Cui, and B. Sun, “Advances in research on petroleum biodegradability in soil,” Environmental Science: Processes & Impacts, vol. 23, no. 1, pp. 9–27, 2021
Lashari, Z. A., Lalji, S. M., Ali, S. I., Kumar, D., Khan, B., & Tunio, U. (2024). Physiochemical analysis of titanium dioxide and polyacrylamide nanofluid for enhanced oil recovery at low salinity. Chemical Papers, 78(6), 3629-3637.
Z. U. ZANGO, “Review of petroleum sludge thermal treatment and utilization of ash as a construction material, a way to environmental sustainability,” International Journal of Advanced and Applied Sciences, vol. 7, no. 12, 2020.
World energy outlook 2017. https://www.iea.org/reports/ world-energy-outlook-2017, last accessed on 12/12/20.
Hussain, S. M. Arif, and M. Aslam, “Emerging renewable and sustainable energy technologies: State of the art,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 12–28, 2017
Mehta, A., Niaz, M., Uzowuru, I. M., & Nwagwu, U. Implementation of the Latest Artificial Intelligence Technology Chatbot on Sustainable Supply Chain Performance on Project-Based Manufacturing Organization: A Parallel Mediation Model in the American Context.
S. Cao, Y. Chen, G. Cheng, F. Du, W. GAO, Z. He, S. Li, S. Lun, H. Ma, Q. Su et al., “Preliminary study on evaluation of smart-cities technologies and proposed uv lifestyles,” in 2018 4th International Conference on Universal Village (UV). IEEE, 2018, pp. 1–49
Valli, L. N. (2024). Predictive Analytics Applications for Risk Mitigation across Industries; A review. BULLET: Jurnal Multidisiplin Ilmu, 3(4), 542-553.
Lodhi, S. K., Hussain, H. K., & Gill, A. Y. (2024). Renewable Energy Technologies: Present Patterns and Upcoming Paths in Ecological Power Production. Global Journal of Universal Studies, 1(1), 108-131.
Choudhary, V., Mehta, A., Patel, K., Niaz, M., Panwala, M., & Nwagwu, U. (2024). Integrating Data Analytics and Decision Support Systems in Public Health Management. South Eastern European Journal of Public Health, 158-172.
Lodhi, S. K., Gill, A. Y., & Hussain, I. (2024). 3D Printing Techniques: Transforming Manufacturing with Precision and Sustainability. International Journal of Multidisciplinary Sciences and Arts, 3(3), 129-138.
U. of Haifa. Exposure to ’white’ light leds appears to suppress body’s production of melatonin more than certain other lights, research suggests. https://www.sciencedaily.com/releases/2011/ 09/110912092554.htm, last accessed on 04/04/21.
Lodhi, S. K., Gill, A. Y., & Hussain, H. K. (2024). Green Innovations: Artificial Intelligence and Sustainable Materials in Production. BULLET: Jurnal Multidisiplin Ilmu, 3(4), 492-507.
Lashari, Z. A., Lalji, S. M., Ali, S. I., Kumar, D., Khan, B., & Tunio, U. (2024). Physiochemical analysis of titanium dioxide and polyacrylamide nanofluid for enhanced oil recovery at low salinity. Chemical Papers, 78(6), 3629-3637.
Jamal, A. (2023). Embracing nature's therapeutic potential: Herbal medicine. International Journal of Multidisciplinary Sciences and Arts, 2(1), 117-126.
Mining and quarrying. https://www.ilo.org/ipec/areas/ Miningandquarrying/lang--en/index.htm, last accessed on 12/12/20.
Lodhi, S. K., Hussain, H. K., & Hussain, I. (2024). Using AI to Increase Heat Exchanger Efficiency: An Extensive Analysis of Innovations and Uses. International Journal of Multidisciplinary Sciences and Arts, 3(4), 1-14.
R. Jurowetzki, “Unpacking big systems–natural language processing meets network analysis. A study of smart grid development in denmark.” A Study of Smart Grid Development in Denmark. (May 21, 2015). SWPS, vol. 15, 2015.
Lodhi, S. K., Gill, A. Y., & Hussain, I. (2024). AI-Powered Innovations in Contemporary Manufacturing Procedures: An Extensive Analysis. International Journal of Multidisciplinary Sciences and Arts, 3(4), 15-25.
L. Cheng and T. Yu, “A new generation of ai: A review and perspective on machine learning technologies applied to smart energy and electric power systems,” International Journal of Energy Research, vol. 43, no. 6, pp. 1928–1973, 2019.
Jamal, A. (2023). Novel Approaches in the Field of Cancer Medicine. Biological times, 2(12), 52-53.
M. Akhloufi and N. Benmesbah, “Outdoor ice accretion estimation of wind turbine blades using computer vision,” in 2014 Canadian Conference on Computer and Robot Vision. IEEE, 2014, pp. 246–253
Downloads
ARTICLE Published HISTORY
Issue
Section
License
Copyright (c) 2024 Ali Husnain, Muhammad Umer Qayyum, Muhammad Fahad, Muhammad Ibrar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.