ac

Big Data and Java are integrated with machine learning

Authors

  • Anis Ahmed Qazi Independent Researcher Germany
  • Ehsan Abbas Independent Researcher Pakistan

Keywords:

Big Data, Evolution, Convergence, Machine Learning, Java, Frameworks for Big Data, Historical Trajectories, Apache Hadoop, Apache Spark, Foundations, Versatility, Library Support, ML Pipelines, Game-Changing, Real-World Case Studies, Lessons Learned, Data Preprocessing, ETL Processes, Feature Engineering.

Dimension Badge Record



Abstract

This in-depth investigation explores the revolutionary nexus of Java, Big Data, and Machine Learning (ML), clarifying the innovations and synergies that result from their integration. The voyage commences with a summary of the past, following the growth from Java's fundamental function in high-level development to the revolutionary influence of Big Data frameworks such as Apache Hadoop and Apache Spark. The story then delves into the fundamentals of machine learning in Java, highlighting its adaptability, rich library support, and crucial role in building strong ML pipelines. The investigation delves into the transformative power of Big Data frameworks, highlighting the distributed file system of Hadoop and the in-memory processing capabilities of Spark. We observe the significant effects of this convergence on a variety of industries through real-world case studies, from e-commerce personalized suggestions to fraud detection in banking. The insights gained from these implementations highlight how crucial it is to use ML models with ethical considerations, interdisciplinary cooperation, and ongoing learning. The following sections cover the nuances of data preprocessing, including the use of Java in ETL workflows, scalable feature engineering using Big Data frameworks, and data quality assurance via transformation and cleansing. ML model deployment is the major focus, along with an exploration of the Java runtime environment, micro services architecture, and crucial aspects of model robustness monitoring and maintenance. The investigation concludes with a focus on case studies and success stories that demonstrate the real-world effects of this convergence in sectors like e-commerce, finance, and healthcare. These real-world examples highlight the accomplishments of companies like Netflix, Uber, Airbnb, and others and provide insightful information about how well integration works to accomplish a range of business objectives.

Google Scholar Cite Analysis
Abstract viewed = 52 times

References

M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A Modern, Open-Source SQL Engine for Hadoop. In CIDR, 2015.

T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan. Mlbase: A distributed machine-learning system. In CIDR, 2013.

J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB, pages 1–7, 2011.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 239–250. ACM, 2015.

Kumar, R. McCann, J. F. Naughton, and J. M. Patel. Model Selection Management Systems: The Next Frontier of Advanced Analytics. SIGMOD Record, 44(4):17–22, 2015.

S. Leo and G. Zanetti. Pydoop: a python mapreduce and hdfs api for hadoop. In Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pages 819–825. ACM, 2010.

X. Li, B. Cui, Y. Chen, W. Wu, and C. Zhang. Mlog: Towards declarative in-database machine learning. Proceedings of the VLDB Endowment, 10(12):1933–1936, 2017.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed GraphLab: A Framework for Machine Learning in the Cloud. PVLDB, 5(8), 2012.

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute, June 2011.

V. Mayer-Schönberger and K. Cukier. Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, 2013.

X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. JMLR, 17(34):1–7, 2016.

H. Miao, A. Li, L. S. Davis, and A. Deshpande. Modelhub: Towards unified data and lifecycle management for deep learning. arXiv preprint arXiv:1611.06224, 2016.

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and R. H. Campbell. Samza: Stateful scalable stream processing at linkedin. Proceedings of the VLDB Endowment, 10(12):1634–1645, 2017.

S. Owen and S. Owen. Mahout in action. 2012.

S. Sakr. Cloud-hosted databases: technologies, challenges and opportunities. Cluster Computing, 17(2):487–502, 2014.

S. Sakr. Big Data 2.0 Processing Systems - A Survey. Springer Briefs in Computer Science. Springer, 2016.

S. Sakr, F. M. Orakzai, I. Abdelaziz, and Z. Khayyat. Large-Scale Graph Processing Using Apache Giraph. Springer, 2016.

R. R. Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52–59, 1997. [41] S. Schelter, A. Palumbo, S. Quinn, S. Marthi, and A. Musselman. Samsara: Declarative machine learning on distributed dataflow systems. In NIPS Workshop MLSystems, 2016

E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht. Keystoneml: Optimizing pipelines for large-scale advanced analytics. In Data Engineering (ICDE), 2017 IEEE 33rd International Conference on, pages 535–546. IEEE, 2017.

Team. Azureml: Anatomy of a machine learning service. In Proceedings of the 2nd International Conference on Predictive APIs and Apps, pages 1–13, 2016.

Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma, R. Murthy, and H. Liu. Data warehousing and analytics infrastructure at facebook. In SIGMOD, 2010.

M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo, S. Madden, and M. Zaharia. Model db: a system for machine learning model management. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, page 14. ACM, 2016.

S. Venkataraman, Z. Yang, D. Liu, E. Liang, H. Falaki, X. Meng, R. Xin, A. Ghodsi, M. J. Franklin, I. Stoica, and M. Zaharia. SparkR: Scaling R Programs with Spark. In SIGMOD, 2016.

T. White. Hadoop: The Definitive Guide. O’Reilly Media, 2012.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Computing with Working Sets. In HotCloud, 2010.

L. Zhao, S. Sakr, A. Liu, and A. Bouguettaya. Cloud Data Management. Springer, 2014.

Y. Zomaya and S. Sakr. Handbook of Big Data Technologies. Springer, 2017.

P. Banerjee, C. Bash, R. Friedrich, P. Goldsack, B. A. Huberman, J. Manley, C. Patel, P. Ranganathan, and A. Veitch. Everything as a service: Powering the new information economy. Computer, 44(3):36–43, 2011.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, et al. Systemml: Declarative machine learning on spark. Proceedings of the VLDB Endowment, 9(13):1425–1436, 2016

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

P. Bailis, K. Olukoton, C. Re, and M. Zaharia. Infrastructure for usable machine learning: The stanford dawn project. arXiv preprint arXiv:1705.07538, 2017.

M. Baker. Data science: Industry allure. Nature, 520:253–255, 2015.

M. Balazinska, B. Howe, and D. Suciu. Data markets in the cloud: An opportunity for the database community. PVLDB, 4(12):1482–1485, 2011.

T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, October 2009.

B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing statistical data analysis in the cloud. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pages 1–12. ACM, 2013.

N. Huijboom and T. Van den Broek. Open data: an international comparison of strategies. European journal of ePractice, 12(1):4–16, 2011

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-03-28
Accepted Date: 2024-03-28
Published Date: 2024-03-29