Model Prediksi Prestasi Mahasiswa Berdasarkan Evaluasi Pembelajaran Menggunakan Pendekatan Data Science
DOI:
10.47709/dsi.v1i1.1168Keywords:
Model Prediksi Prestasi, Data Science, Evaluasi PembelajaranDimension Badge Record
Abstract
Perguruan tinggi merupakan satuan penyelenggara pendidikan tinggi sebagai tingkat lanjut jenjang pendidikan menengah di jalur pendidikan formal. Aspek prestasi belajar merupakan salah satu aspek penilaian keberhasilan perguruan tinggi dalam proses belajar. Dalam makalah ini menyajikan hasil analisis hubungan antara pembelajaran dengan prestasi mahasiswa dimana tahapan yang dilakukan menggunakan pendetakan data science. Berdasarkan Analisis data terdapat tiga indikator penting dalam penilaian prestasi belajar yaitu pedagogi, profesional dan kepribadian. Ketiga fitur digunakan sebagai variabel dependen untuk memprediksi prestasi belajar dimana algoritma DecisionTree menghasilkan akurasi lebih baik dari pada model k-nearest neighbors (KNN), Logistic Regression, Support Vector Machine, Naive Bayes dan dengan tingkat akurasi 68%, kemudian KNN dengan akurasi 66% dan lainnya sebesar 55% pada masing-masing algoritma yang diusulkan.
Abstract viewed = 901 times