Analysis of Public Sentiment Text Clustering on Tax Increases using Orange Data Mining on Twitter

Authors

  • Ibnu Azhar Maulana Widyatama University, Indonesia
  • Ari Purno Wahyu Wibowo Widyatama University, Indonesia

DOI:

https://doi.org/10.47709/brilliance.v5i1.5787

Keywords:

Clustering, Data Analysis, Orange Data Mining, Tax, Text Mining

Abstract

Taxes play an important role in the life of a nation and state, particularly in the implementation of national development. Recently, Indonesia issued a new policy to increase VAT to 12%. This policy has sparked a range of both negative and positive opinions from the public. As a result, various reactions and sentiments have been expressed by citizens regarding the policy. To analyze these public sentiments, text mining was carried out using the Orange Data Mining application, utilizing data from the Twitter platform to observe and evaluate Indonesian citizens' reactions. A total of 100 tweets were collected using relevant keywords to find content related to the policy. The results were then categorized into several sentiment groups based on the similarity of their content. After the text classification, the data was stored in a table showing the number of positive, negative, and neutral sentiments. This data was later visualized in a graph, which revealed that the most common reaction was disappointment, followed by confusion, enthusiasm, and lastly, anger. The results of this study indicate that many Indonesian citizens are disappointed with the VAT increase policy. Many believe that the government's use of tax funds has not been satisfactory. Therefore, the government is urged to improve its programs so that citizens can feel the benefits of the taxes they pay.

References

Afdal, M., & Elita, L. R. (2022). Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 8(1), 78. https://doi.org/10.24014/rmsi.v8i1.16595

Al Mustaqim, D., Abdul Hakim, F., Atfalina, H., & Fatakh, A. (2024). Peran Media Sosial Sebagai Sarana Partisipasi Warganet Dalam Mewujudukan Keadilan dan Akuntabilitas Penegakan Hukum di Indonesia. Journal of Multidisciplinary Research and Development, 1(1), 53–66. https://doi.org/10.56916/jmrd.v1i1.655

Annur, C. M. (2023). Ada 27 Juta Pengguna Twitter di Indonesia, Terbanyak ke-4 Global. https://databoks.katadata.co.id/teknologi-telekomunikasi/statistik/75dd4b36866dc54/ada-27-juta-pengguna-twitter-di-indonesia-terbanyak-ke-4-global

Anwar, M. T., & Permana, D. R. A. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Produk Kendaraan Listrik Menggunakan VADER. Jurnal Teknik Informatika Dan Sistem Informasi, 10(1), 783–792. http://jurnal.mdp.ac.id

Ardiansyah, A. (2022). Analisa Persepsi Kenaikan Ppn Dengan Metode Weighted Inverse Document Frequency Pada Media Sosial Twiter. XVI(42), 32–40.

Cindrakasih, R. R. (2024). Penggunaan Akun Twitter Sebagai Media Komunikasi Di Kalangan Penggemar Musik Korean HIP HOP. 8(1), 86–95.

Djiwadikusumah, F., Irawan, G. H., & Haekal Al-Fadilah, R. (2021). Web scraping situs e-commerce menggunakan teknik parsing dom. Jurnal Siliwangi, 7(2), 52–57. https://jurnal.unsil.ac.id/index.php/jssainstek/article/view/4223/1958

Fauziah, N. (2024). Pelabelan VADER Dalam Menganalisis Persepsi Masyarakat Terhadap Kenaikan Tarif PPN di Indonesia Novi. 12(2), 228–238. https://doi.org/https://doi.org/10.29103/jak.v12i2.16796

Febiola, L. (2024). ANALISA PERSEPSI WAJIB PAJAK ORANG PRIBADI TERHADAP KEBIJAKAN KENAIKAN TARIF PAJAK PERTAMBAHAN NILAI MENJADI 12% DI TAHUN 2025. Jurnal Sosial Dan Ekonomi, 6(1)(1). https://doi.org/https://idm.or.id/JSER/index.php/JSER

Feri, S. (2024). Memperkenalkan Orange Data Mining:Platform Analisis Data yang Ramah Pengguna. https://riset.ferisulianta.com/2024/04/memperkenalkan-orange-data-mining.html

Gunawan, L., Kautsar, M. Al, & Basith, A. A. (2020). Analisis Kontribusi , Efektivitas Dan Laju Pertumbuhan Penerimaan Pajak Parkir Terhadap Pendapatan Pajak Daerah.

Haq, M. A., Purnomo, W., & Setiawan, N. Y. (2023). Analisis Clustering Topik Survey menggunakan Algoritme K-Means (Studi Kasus: Kudata). … Teknologi Informasi Dan Ilmu …, 7(7), 3498–3506. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/13147%0Ahttps://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/13147/5928

Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358

Jhosefhin, N. V. R., & Dewi, C. (2025). Analisis Sentimen Crawling Data dari Sosial Media X tentang Gaza Menggunakan Metode SVM dan Decision Tree. Jurnal Indonesia?: Manajemen Informatika Dan Komunikasi, 6(1), 427–437. https://doi.org/10.35870/jimik.v6i1.1225

Koynja, J. J. (2023). Tingkat Kesadaran Pembayaran Pajak ( Studi Di Kecamatan Labuapi Kabupaten Lombok Barat ) Level of Tax Payment Awareness ( A Study in Labuapi Subdistrict , West Lombok Regency ). 8(2).

Lestari, B. D., Hukum, F., Pembangunan, U., Jakarta, V., Nugroho, A. A., Hukum, F., Pembangunan, U., & Jakarta, N. V. (2024). Kepatuhan pajak dan kebijakan hukum terhadap kesejahteraan bisnis di indonesia. 12(2), 3318–3330.

Rifaldi, D., Abdul Fadlil, & Herman. (2023). Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet “Mental Health.” Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 161–171. https://doi.org/10.51454/decode.v3i2.131

Suliman, S. (2021). Implementasi Data Mining Terhadap Prestasi Belajar Mahasiswa Berdasarkan Pergaulan dan Sosial Ekonomi Dengan Algoritma K-Means Clustering. Simkom, 6(1), 1–11. https://doi.org/10.51717/simkom.v6i1.48

Wahyuni, W. (2022). Analisis Sentimen terhadap Opini Feminisme Menggunakan Metode Naive Bayes. Jurnal Informatika Ekonomi Bisnis, 4, 148–153. https://doi.org/10.37034/infeb.v4i4.162

Yudistira, E. & C. & N. (2024). Pengaruh Kenaikan Pajak Pertambahan Nilai (PPN) Terhadap Pendapatan Wajib Pajak Badan Usaha di Kota Metro. Journal of Science Research, Vol4 No.3, 8090–8104.

Zahra, F., Ridla, M. A., & Azise, N. (2024). Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus?: Toko Sinar Harahap). JUSTIFY?: Jurnal Sistem Informasi Ibrahimy, 3(1), 55–65. https://doi.org/10.35316/justify.v3i1.5335

Downloads

Published

2025-04-28

How to Cite

Maulana, I. A., & Wibowo, A. P. W. (2025). Analysis of Public Sentiment Text Clustering on Tax Increases using Orange Data Mining on Twitter. Brilliance: Research of Artificial Intelligence, 5(1), 93–99. https://doi.org/10.47709/brilliance.v5i1.5787

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.