Prediction of Crime Cases in 2025 in India Using the Fuzzy Time Series Chen Model Method
DOI:
https://doi.org/10.47709/brilliance.v5i1.5745Keywords:
Crime, case, Fuzzy Time Series, Chen, PredictionAbstract
India's natural beauty and culture, which attract the attention of international tourists, are less able to increase tourist visits due to high crime cases. Tourists' fear of visiting the country has a direct impact on decreasing economic turnover, so the local economy has become very low. Predictions of criminal cases aim to provide an overview of cases that will occur in the next period, therefore the government can take appropriate policies to reduce crime cases. These predictions enable policymakers to plan strategic and data-based preventive measures. The method used is the Fuzzy Time Series Model Chen, because this method can overcome data uncertainty, and offers simplicity and ease in application. Valid and credible criminal statistics data in India is obtained from the site www.kaggle.com. A trusted platform that provides various quality datasets. This data will be used as a basis for the analysis and prediction of criminal cases in India. The results of this research show that in the range of 60 months from January 2020 to December 2024 using the Fuzzy Time Series Chen Model method to predict the number of criminal cases in India produced predictions in January 2025 with cases of 188.36 cases with a MAPE error ratio of 9.08% which is included in outstanding forecasting category.
References
Adiputra, R., Herdiani, E. T., & Sahriman, S. (2021). Peramalan jumlah penumpang kapal laut menggunakan metode fuzzy runtun waktu Chen orde tinggi. ESTIMASI: Jurnal Statistika dan Aplikasinya, 2(1), 38–48. https://doi.org/10.20956/ejsa.v2i1.10328
D. Nababan, & Alexander, E. (2020). Implementasi metode fuzzy time series dengan model algoritma Chen untuk memprediksi harga emas. Jurnal Teknik Informatika, 13(1), 71–78. https://doi.org/10.15408/jti.v13i1.15516
Deremi, S., Nainggolan, N., & Weku, W. (2022). Peramalan tingkat kriminalitas Kota Ternate Provinsi Maluku Utara menggunakan metode double exponential smoothing. Indonesia Journal of Intelligence Data Science, 1(1), 27–34.
Desmonda, D., Tursina, & Irwansyah, M. A. (2018). Prediksi besaran curah hujan menggunakan metode fuzzy time series. Jurnal Sistem dan Teknologi Informasi, 6(4), 145–149.
Fadhillah, A., Bettiza, M., & Ritha, N. (2017). Perbandingan model Chen dan model Cheng pada algoritma fuzzy time series untuk prediksi harga bahan pokok. Jurnal Universitas Maritim Raja Ali Haji.
Fauziah, N., Wahyuningsih, S., & Nasution, Y. N. (2016). Peramalan menggunakan fuzzy time series Chen (Studi Kasus: Curah Hujan Kota Samarinda). Statistika, 4(2), 52–61.
Gajah, A. M., Dur, S., & Widyasari, R. (2023). Medan city unemployment rate prediction using the fuzzy time series method of the Chen model for 2022–2024. Logaritma: Jurnal Ilmu-ilmu Pendidikan dan Sains, 11(1), 77–89.
Ikhsanudin, M., Handayani, T., & Sukono. (2022). Metode fuzzy time series model Chen untuk memprediksi jumlah kasus aktif COVID-19 di Indonesia. Jurnal Matematika dan Aplikasinya, 15(2), 89–98.
Lewis, C. D. (1982). Industrial and business forecasting methods. London: Butterworths Publishing.
Mamat, M. Z., Yusof, Y., & Hassan, M. A. (2018). Analyzing crime trends using traditional and computational techniques: Challenges and opportunities. International Journal of Advanced Studies in Computer Science, 12(4), 45–58.
Nurkhanifah, P., Piyadhammo, J. C., Intan, F., & Rahmat, A. (2022). Implementasi fuzzy time series Chen untuk prediksi jumlah mahasiswa baru Universitas Tidar. Jurnal Ilmiah Teknik Elektro, 9(1), 22–28.
Rahmawati, Yuniza, A. N. Rahma, & Zukrianto. (2020). Prediksi jumlah wisatawan di Kota Pekanbaru pada tahun 2019–2023 dengan menggunakan metode fuzzy time series Chen. Jurnal Pendidikan Matematika, 2(1), 36–44.
Vivianti, M., Aidid, K., & Nursang, M. (2020). Implementasi metode fuzzy time series untuk peramalan jumlah pengunjung di Benteng Fort Rotterdam. VARIANSI: Jurnal Statistika dan Pengajaran Aplikatif, 2, 1–12. https://doi.org/10.35580/variansiunm12895
Wuryanto, D., Endro, & Puspita, V. N. (2020). Model average-based fuzzy time series untuk prediksi perkembangan kasus terkonfirmasi positif covid-19. Jurnal Informatika Upgris, 7(2), 2460–4801. https://doi.org/10.26877/jiu.v7i2.9559
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Annisa karima, Anni Zulfia, T. Sukma Achriadi Sukiman, Athiyatul Ulya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.