Identification of Fish Suitable for Consumption with Artificial Intelligence Method Using CNN and SVM Algorithms
DOI:
https://doi.org/10.47709/brilliance.v5i1.5728Keywords:
Image Processing, CNN, SVM, Fish Classification, Fish FreshnessAbstract
In the fishing industry, determining the freshness of fish is essential since it directly affects the quality of consumption and the viability of items on the market. The purpose of this research is to use Convolutional Neural Network (CNN) and Support Vector Machine (SVM) techniques to create an automated system that can determine the freshness of tilapia fish. Identification is carried out by analyzing the visual characteristics of the fish, in particular skin discoloration, which is the main indicator of freshness. The dataset used in this study was obtained from Kaggle, which covers various conditions of tilapia fish with different levels of freshness.
Color conversion into RGB, HSV, and LAB formats to get more accurate color information, image normalization to normalize color intensity, and segmentation to highlight pertinent areas are all part of the pre-processing procedure used to increase the model's accuracy. While SVM is responsible for classifying fish into groups that are either acceptable or unfit for ingestion, CNN is utilized to extract features from fish photos. System testing is carried out by comparing model performance based on classification accuracy.
The experiment's findings demonstrated that the CNN and SVM combination could accurately classify the freshness of tilapia fish, however performance was heavily reliant on the input image's quality. It is anticipated that this technology will replace less effective manual techniques, lessen human observational bias, and expedite the industrial fish freshness assessment procedure. With this artificial intelligence-based system, the fishing industry can improve the efficiency and accuracy of the fish sorting process, which can ultimately improve the quality of products consumed by the public.
References
Adiningsi, Sri, Bambang Pramono, Adha Mashur Sajiah, and Rizal Adi Saputra. 2025. “IDENTIFIKASI KUALITAS IKAN CAKALANG SEGAR BERBASIS CITRA MATA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE ( SVM ) DENGAN FUNGSI KERNEL RADIAL BASIS FUNCTION.” 9(1):1522–30.
Aditya Dwi Putro Wicaksono?; Henri Tantyoko. 2023. “JTIM?: Jurnal Teknologi Informasi Dan Multimedia Hybrid Algoritma Vgg16-Net Dengan Support Vector Machine.” 5(2):56–65.
Alesandro, Claudio, Rafael Rogi, Ronny E. Pandaleke, Banu Dwi Handono, Fakultas Teknik, Jurusan Sipil, Universitas Sam, and Ratulangi Manado. 2020. “DENGAN PERKUATAN STRUKTUR BAJA ( Menggunakan Bahasa Pemrograman MATLAB ).” 8(4).
Alita, Debby, Yusra Fernando, and Heni Sulistiani. 2020. “Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter.” Jurnal Tekno Kompak 14(2):86. doi: 10.33365/jtk.v14i2.792.
Arif Agustyawan. 2020. “Pengolahan Citra Untuk Membedakan Ikan Segar Dan Tidak Segar Menggunakan Convolutional Neural Network.” Indonesian Journal of Applied Informatics 5(1):11. doi: 10.20961/ijai.v5i1.41770.
Asrianda, Asrianda, Hafizh Al Kautsar Aidilof, and Yoga Pangestu. 2021. “Machine Learning for Detection of Palm Oil Leaf Disease Visually Using Convolutional Neural Network Algorithm.” Journal of Informatics and Telecommunication Engineering 4(2):286–93. doi: 10.31289/jite.v4i2.4185.
Fahmi Chairulloh Widia Sumantri, and Sutisna. 2022. “Pengolahan Citra Digital Plat Nomor Kendaraan Bermotor Menggunakan K-Nn.” Jurnal Informatika Teknologi Dan Sains 4(2):101–4. doi: 10.51401/jinteks.v4i2.1999.
Firlansyah, Alfian, Andi Baso Kaswar, and Andi Akram Nur Risal. 2021. “Klasifikasi Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna Menggunakan Jaringan Syaraf Tiruan.” Techno Xplore: Jurnal Ilmu Komputer Dan Teknologi Informasi 6(2):55–60.
Fitriyah, Hurriyatul, Dahnial Syauqy, and Faizal Andy Susilo. 2020. “Deteksi Kesegaran Ikan Tongkol (Euthynnus Affinis) Secara Otomatis Berdasarkan Citra Mata Menggunakan Binary Similarity.” Jurnal Teknologi Informasi Dan Ilmu Komputer 7(5):879–86. doi: 10.25126/jtiik.2020753839.
Honainah, Honainah, Fahrial Faqih Romadhoni, and Ato’illah Ato’illah. 2022. “Klasifikasi Kesegaran Ikan Tongkol Berdasarkan Warna Mata Menggunakan Metode Backpropagation.” Jurnal Penelitian Inovatif 2(2):405–14. doi: 10.54082/jupin.90.
Jumadi, Juju, Yupianti Yupianti, and Devi Sartika. 2021. “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering.” JST (Jurnal Sains Dan Teknologi) 10(2):148–56. doi: 10.23887/jstundiksha.v10i2.33636.
Khairina, N., & Harahap, M. K. (2018). Menjaga Kerahasiaan Data dengan Steganografi Kombinasi LSB-2 dengan LSB-3. SinkrOn - Jurnal & Penelitian Teknik Informatika , 3(1), 286-288.
Khairina, N., Harahap, M. K., & Lubis, J. H. (2018). The Authenticity of Image using Hash MD5 and Steganography Least Significant Bit . International Journal Of Information System & Technology, 2(1), 1-6.
Peryanto, Ari, Anton Yudhana, and Rusydi Umar. 2020. “Klasifikasi Citra Menggunakan Convolutional Neural Network Dan K Fold Cross Validation.” Journal of Applied Informatics and Computing 4(1):45–51. doi: 10.30871/jaic.v4i1.2017.
Prasetyo, Eko, Rani Purbaningtyas, Raden Dimas Adityo, Enrico Tegar Prabowo, and Achmad Irfan Ferdiansyah. 2021. “Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata.” Jurnal Teknologi Informasi Dan Ilmu Komputer 8(3):601. doi: 10.25126/jtiik.2021834369.
Pujiarini, Erna Hudianti. 2023. “Convolution Neural Network Untuk Identifikasi Tingkat Kesegaran Ikan Nila Berdasarkan Perubahan Warna Mata.” Jurnal Khatulistiwa Informatika 11(1):21–25. doi: 10.31294/jki.v11i1.14305.
Putri, Devina Humaira, Muhammad Rizka, and Zulfan Khairil Simbolon. 2023. “Rancang Bangun Sistem Identifikasi Kesegaran Ikan Berdasarkan Citra Mata Menggunakan Support Vector Machine.” Jurnal Teknologi Rekayasa Informasi Dan Komputer 6(2).
Ratnasari Desi. 2019. “Identifikasi Jenis Ikan Air Tawar Di Pasar Masuka Sintang Kalimantan Barat.” Edumedia?: Jurnal Keguruan Dan Ilmu Pendidikan, 3(2):82–87.
Sabarudin Saputra, Anton Yudhana, and Rusydi Umar. 2022. “Identifikasi Kesegaran Ikan Menggunakan Algoritma KNN Berbasis Citra Digital.” Krea-TIF: Jurnal Teknik Informatika 10(1):1–9. doi: 10.32832/kreatif.v10i1.6845.
Sholihin, Miftahus. 2021. “Identifikasi Kesegaran Ikan Berdasarkan Citra Insang Dengan Metode Convolution Neural Network.” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi) 8(3):1352–60. doi: 10.35957/jatisi.v8i3.939.
Styorini, Wiwin-, Anggita- Pratiwi, and Cyntia- Widiasari. 2022. “Identifikasi Tingkat Kesegaran Ikan Berbasis Android.” Jurnal Amplifier?: Jurnal Ilmiah Bidang Teknik Elektro Dan Komputer 12(1):12–18. doi: 10.33369/jamplifier.v12i1.19174.
Taheri-Garavand, Amin, Amin Nasiri, Ashkan Banan, and Yu-Dong Zhang. 2020. “Title: 1 Smart Deep Learning-Based Approach for Non-Destructive Freshness Diagnosis of 2 Common Carp Fish 3 Running Title: 4 Smart Deep Learning-Based Non-Destructive Approach of Fish Freshness Diagnosis.” 1–21.
Tanggraeni, Artanti Inez, and Melkior N. N. Sitokdana. 2022. “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes.” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi) 9(2):785–95. doi: 10.35957/jatisi.v9i2.1835.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ramadhanty Riqqa Sunduz, Ari Purno Wahyu Wibowo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.