Building a fish disease detection application based on Smart Fishery with Image Processing and Deep Learning
DOI:
https://doi.org/10.47709/brilliance.v5i1.5719Keywords:
Fisheries, Catfish, Deep Learning, CNN, Smart FisheryAbstract
Indonesia has great potential in the fisheries sector, especially in catfish cultivation which is one of the main commodities. Catfish has advantages in fast growth, high durability to the environment, and high market demand. However, the main challenge in catfish farming is disease attacks that can lead to mass deaths and economic losses for farmers. This disease often arises due to poor water quality and lack of knowledge of farmers regarding its identification and handling.
Deep Learning-based artificial intelligence technology with the Convolutional Neural Network (CNN) method offers automatic fish disease detection solutions through digital image analysis. The CNN model is able to recognize patterns and classify images with high accuracy, so it can be a quick and efficient diagnostic tool. This study developed a Smart Fishery-based fish disease identification system with Image Processing techniques to improve image quality before being analyzed using CNN. The implementation of this method is expected to increase the efficiency of detecting catfish diseases and provide appropriate treatment recommendations.
The study results indicate that the developed system effectively achieves high accuracy in classifying fish diseases. Moreover, the system includes additional features, such as virtual fish growth measurement and texture analysis utilizing the Gray Level Co-occurrence Matrix (GLCM). This technology is anticipated to assist fish farmers in enhancing productivity and minimizing the risk of fish mortality due to diseases.
References
Bintang, Y. K., & Imaduddin, H. (2024). Pengembangan Model Deep learning untuk Deteksi Retinopati Diabetik Menggunakan Metode Transfer Learning. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(3), 1442–1455.
Dahliana, B., Hasmidar, H., & Jumardi, J. (2023). Strategi Pengembangan Budidaya Ikan Lele (Clarias sp.) Pada Kolam Terpal. Jurnal Pertanian Agros, 25(2), 1291–1298.
Fidyandini, H. P. (2021). Pelatihan penggunaan probiotik dan imunostimulan untuk pencegahan dan pengobatan penyakit ikan lele pada kelompok pembudidaya ikan Ulam Adi Jaya Kabupaten Mesuji. Jurnal Pengabdian Kepada Masyarakat Sakai Sambayan, 5(2), 116–119.
Honarmand Ebrahimi, S., Ossewaarde, M., & Need, A. (2021). Smart fishery: a systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability, 13(11), 6037.
Kurniawan, W. K. W., Harmini, T. H. T., & Nadhiroh, A. A. N. A. A. (2024). Deteksi Penyakit Bakteri Aeromonas Hydrophila Pada Ikan Air Tawar Menggunakan Metode Convolutional Neural Network. TEKNOLOGI NUSANTARA, 6(2), 56–66.
Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep learning in medical image processing.
Zeitschrift Für Medizinische Physik, 29(2), 86–101.
Mawarni, D. I., Juwana, W. E., Yuana, K. A., & Budhijanto, W. (2022). Hydrodynamic characteristics of the microbubble dissolution in liquid using the swirl flow type of microbubble generator. Journal of Water Process Engineering, 48, 102846.
Mehmood, S., Ghazal, T. M., Khan, M. A., Zubair, M., Naseem, M. T., Faiz, T., & Ahmad, M. (2022). Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing. IEEE Access, 10, 25657–25668.
Myori, D. E. (2021). Object detection with a webcam using the Python programming language. Journal of Applied Engineering and Technological Science, 2(2), 103–111.
Permata, W. W., & Hadi, A. (2020). Diagnosis Penyakit Ikan Lele Berbasis Android Menggunakan Metode Certainty Factor. Voteteknika (Vocational Teknik Elektronika Dan Informatika), 8(2), 1–8.
Radovanovi?, D., & ?ukanovic, S. (2020). Image-based plant disease detection: a comparison of deep learning and classical machine learning algorithms. 2020 24th International Conference on Information Technology (IT), 1–4.
Rosalina, R., & Wijaya, A. (2020). Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning. Jurnal Teknik Informatika Dan Sistem Informasi, 6(3).
Tian, Y. (2020). Artificial intelligence image recognition method based on convolutional neural network algorithm. Ieee Access, 8, 125731–125744.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233.
Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2021). Deep learning for smart fish farming: applications, opportunities and challenges. Reviews in Aquaculture, 13(1), 66–90.
Z. Arif, M. L. (2022). Klasifikasi_Gambar_Bahan_Makanan_untuk_Penderita_B.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rista Aryanti, Ari Purno Wahyu Wibowo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.