A Comparative Study of Naive Bayes, Vader, and TextBlob Methods in Sentiment Analysis of ShopeeFood on Twitter
DOI:
https://doi.org/10.47709/brilliance.v5i1.5687Abstract
Twitter API tweets were utilized to analyze sentiments surrounding ShopeeFood using its algorithmic attachment. A contended sample of 2,500 tweets was gathered for Shapshot-1 in sample focus and was later cleaned and translated into English. The methods employed for the analysis include TextBlob, VADER, and Naïve Bayes classifiers. The analysis reconsolidated, yet again, that tweets, which, by and large, had neutral sentiments attached to them, as confirmed by Naïve Bayes out of 83 per cent accuracy attained. VADER's classification resulted in 85.08% of tweets being categorized as neutral, positive 9.4%, and negative 5.52%. All three constructs captured presented similar results, but the Naive Bayes model proved to be more favourable in terms of sentiment classification; despite such successes with VADER and TextBlob, feature selection and the changes from the translation left them a flaw within the analysis. These problems highlight the challenges posed by social media data, which is rife with casual language, slang, and emoticons. To overcome these challenges, future work should focus on employing neural network techniques that would bolster performance for sentiment classification on large corpora. Practices such as the collection of social media opinion sentiment within the pre-processing stages need more focus. More sophisticated models and advanced pre-processing methods can yield more fine-grained sentiment and opinion expressions on Twitter.
References
Agustina, V., & Saraswati, S. (N.D.). Implementasi Metode Naïve Bayes Classifier Dalam Analisis Sentimen Opini Publik Twitter Tentang G20 Indonesia.
Akhsani, R., Prayoga, S., Basatha, R., Akbar, M. S., Aisyah Elfaiz, E., Putra, C. D., Surabaya, N., Kec, J. K., & Surabaya, G. (2025). Sistemasi: Jurnal Sistem Informasi Penerapan Metode Naïve Bayes Untuk Klasifikasi Performa Siswa Application Of Naïve Bayes Method For Student Performance Classification. http://sistemasi.ftik.unisi.ac.id
Aljedaani, W., Rustam, F., Mkaouer, M. W., Ghallab, A., Rupapara, V., Washington, P. B., Lee, E., & Ashraf, I. (2022). Sentiment Analysis On Twitter Data Integrating Textblob And Deep Learning Models: The Case Of Us Airline Industry. Knowledge-Based Systems, 255. https://doi.org/10.1016/j.knosys.2022.109780
Ccoya, W., & Pinto, E. (2023). Comparative Analysis Of Libraries For The Sentimental Analysis. http://arxiv.org/abs/2307.14311
Farhan, M. Z. (2022). Analisis Sentimen Layanan Shopeefood Pada Twitter Dengan Metode K-Nearest ….. Analisis Sentimen Layanan Shopeefood Pada Twitter Dengan Metode K-Nearest Neighbor, Support Vector Machine, Dan Decision Tree. Z. Farhan/ Jimi, 7(2), 2549–7480. https://doi.org/10.35316/jimi.v7i2.96-107
Gulati, K., Saravana Kumar, S., Sarath Kumar Boddu, R., Sarvakar, K., Kumar Sharma, D., & Nomani, M. Z. M. (2022). Comparative Analysis Of Machine Learning-Based Classification Models Using Sentiment Classification Of Tweets Related To Covid-19 Pandemic. Materials Today: Proceedings, 51, 38–41. https://doi.org/10.1016/j.matpr.2021.04.364
Hidayat, R., Fikry, M., Yanto, F., & Pandu Cynthia, E. (N.D.). Penerapan Naïve Bayes Classifier Dalam Klasifikasi Sentimen Publik Di Twitter Terhadap Puan Maharani. Juki : Jurnal Komputer Dan Informatika, 6(1).
Khatib Sulaiman Dalam No, J., Firman Ashari, I., Daffa, M., Ali, S., & Teknologi Sumatera, I. (N.D.). Sentiment Analysis Of Tweets About Allowing Outdoor Mask Wear Using Naïve Bayes And Textblob. Indonesian Journal Of Computer Science Attribution, 12(3), 2023–1092.
Maulana, B. A., Fahmi, M. J., Imran, A. M., & Hidayati, N. (2024). Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes Dan Support Vector Machine (Svm). Malcom: Indonesian Journal Of Machine Learning And Computer Science, 4(2), 375–384. https://doi.org/10.57152/malcom.v4i2.1206
Mufidah, F. S., Winarno, S., Alzami, F., Udayanti, E. D., & Sani, R. R. (2022). Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter Dengan Algoritma Naïve Bayes Classifier. Joins (Journal Of Information System), 7(1), 14–25. https://doi.org/10.33633/joins.v7i1.5883
Mursyid, R., & Dwi Indriyanti, A. (2024). Perbandingan Akurasi Metode Analisis Sentimen Untuk Evaluasi Opini Pengguna Pada Platform Media Sosial (Studi Kasus: Twitter). Journal Of Informatics And Computer Science, 06.
Petiwi, M. I., Triayudi, A., & Sholihati, I. D. (2022). Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes Dan Support Vector Machine. Jurnal Media Informatika Budidarma, 6(1), 542. https://doi.org/10.30865/mib.v6i1.3530
Qi, Y., & Shabrina, Z. (2023). Sentiment Analysis Using Twitter Data: A Comparative Application Of Lexicon- And Machine-Learning-Based Approach. Social Network Analysis And Mining, 13(1). https://doi.org/10.1007/s13278-023-01030-x
Ratiasasadara, P. W., Sudarno, S., & Tarno, T. (2023). Analisis Sentimen Penerapan Ppkm Pada Twitter Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi-Square. Jurnal Gaussian, 11(4), 580–590. https://doi.org/10.14710/j.gauss.11.4.580-590
Septiana, E., & Widayani, S. 1 A. (2020). Marketplace Shopee Sebagai Media Promosi Penjualan Umkm Di Kota Blitar. In Jurnal Pemasaran Kompetitif (Vol. 4, Issue 1). Http://Www.Openjournal.Unpam.Ac.Id/Index.Php/Jpk
Setiadi, K. (2023). Analisis Sentimen Pelanggan Terhadap Layanan Shopeefood Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm). Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(1).
Sohail, S. S., Khan, M. M., Arsalan, M., Khan, A., Siddiqui, J., Hasan, S. H., & Alam, M. A. (2021). Crawling Twitter Data Through Api: A Technical/Legal Perspective. http://arxiv.org/abs/2105.10724
Supangat. (2021). “Peluang Bisnis Makanan Dan Minuman Di Shopee Food Bagi Umkm.
Syahroni, A. Wahab. (2023). Analisis Sentimen Komentar Mahasiswa Terhadap Dosen Mata Kuliah Pada Aplikasi Simat. Jurnal Processor, 18(2). https://doi.org/10.33998/processor.2023.18.2.1447
Tirtayasa, A., Listiyo Wibowo, A., Jl Panjaitan No, P. Di, Purwokerto Selatan, K., Banyumas, K., & Tengah, J. (2023). Sentiment Analysis Tweet Ktt G-20 Di Media Sosial Twitter Menggunakan Metode Naïve Bayes. In Jurnal Pengembangan Sistem Informasi Dan Informatika (Vol. 4, Issue 2). https://developer.twitter.com/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Amirudin Khorul Huda, Surya Tri Atmaja Ramadhani, Fiyas Mahananing Puri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.