Improving Multiclass Rainfall Prediction with Multilayer Perceptron and SMOTE: Addressing Class Imbalance Challenges
DOI:
10.47709/brilliance.v4i2.5203Keywords:
Rainfall classification, Class imbalance, Multilayer Perceptron, SMOTE, Neural NetworkDimension Badge Record
Abstract
Rainfall is a key climate element that affects weather patterns and human activities, especially in agriculture and daily life. Therefore, accurately classifying rainfall is crucial for predicting future rainfall amounts. This study uses the Multilayer Perceptron (MLP) classification method, a neural network algorithm, to classify rainfall. The dataset, sourced from the BMKG website, has a class imbalance, requiring using the SMOTE (Synthetic Minority Over-sampling Technique) technique. The research compares the performance of MLP with and without SMOTE. The results show that the best model was achieved with SMOTE. MLP without SMOTE achieved an accuracy of 75%, sensitivity of 40.34%, specificity of 86.15%, and an AUC of 63.25%. In comparison, MLP with SMOTE achieved an accuracy of 71.27%, sensitivity of 71.14%, specificity of 90.30%, and an AUC of 80.72%. Although accuracy decreased, the overall evaluation, particularly the AUC, improved significantly. Therefore, the SMOTE technique effectively addresses the class imbalance issue in rainfall classification.
Abstract viewed = 47 times
References
Gede, I., Gunadi, A., Made, I., Oka Gunawan, A., Widastra, P. E., Candana, H., Ayu, I., Arnawa, W., Agoes Edo, K., & Putra, K. (2022). Klasifikasi Curah Hujan Harian Menggunakan Learning Vector Quantization. Jurnal Ilmu Komputer Indonesia (JIK), 7(2), 1–7.
Gumelar, G., Ain, Q., Marsuciati, R., Agustanti Bambang, S., Sunyoto, A., & Syukri Mustafa, M. (2021). Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance. SISFOTEK?: Sistem Informasi Dan Teknologi, 250–255.
Gunadi, I., Suseno, J. E., & Khuriati, A. (2022). Penentuan Curah Hujan Berdasarkan Input Cuaca Menggunakan Metode Logika Fuzzy Mamdani. Jurnal Pengabdian, 2(1), 155–159. https://doi.org/10.14710/Gading.
Imanwardhani, C. S. (2018). Pendekatan Synthetic Minority Oversampling Technique dalam Menangani Klasifikasi Imbalanced Data Biner. 13–15.
Kamal, N., & Ramdhani, Y. (2023). Optimasi Algoritma Neural Network berbasis Fitur Seleksi Menggunakan Algoritma Genetika Untuk Prediksi Curah Hujan. E-PROSIDING TEKNIK INFORMATIKA, 4(2), 269–282.
Khaira, A. U. (2021). Analisis Sentiment Pada Tweet Dengan Tagar #Mahkamah Konstitusi Menggunakan Metode Multi Layer Perceptron. In Repository Universitas Islam Riau.
Mahmudah, K. R., Purnama, B., Indriani, F., & Satou, K. (2021). Machine learning algorithms for predicting chronic obstructive pulmonary disease from gene expression data with class imbalance. BIOINFORMATICS 2021 - 12th International Conference on Bioinformatics Models, Methods and Algorithms; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, February, 148–153. https://doi.org/10.5220/0010316501480153
Naomi Nessyana Debataraja, R. D. P. S. W. R. (2020). Penerapan Synthetic Minority Oversampling Technique Dalam Mengatasi Data Tidak Seimbang Pada Metode Classification and Regression Tree. Bimaster?: Buletin Ilmiah Matematika, Statistika Dan Terapannya, 9(1), 231–238. https://doi.org/10.26418/bbimst.v9i1.38949
Nugroho, A., & Rilvani, E. (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno.Com, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527
Nurdian, R. A., Mujib Ridwan, & Ahmad Yusuf. (2022). Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru. Jurnal Teknik Informatika Dan Sistem Informasi, 8(1), 24–32. https://doi.org/10.28932/jutisi.v8i1.4004
Pradipta, M. I. (2020). Klasifikasi Curah Hujan Menggunakan Metode Ensemble Subset K-Nearest Neighbor.
Ridho, I. I., Mahalisa, G., Sari, D. R., & Fikri, I. (2022). METODE NEURAL NETWORK UNTUK PENENTUAN AKURASI PREDIKSI HARGA RUMAH. Technologia, 13(1), 56–58.
Ridhovan, A., & Suharso, A. (2022). Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 58–65. https://doi.org/10.29100/jipi.v7i1.2410
Sutoyo, E., & Fadlurrahman, M. A. (2020). Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 379. https://doi.org/10.26418/jp.v6i3.42896
Triangga, A. (2020). Analisis Curah Hujan Dengan Pemodelan Deret Waktu Pada Das Walanae. U N I V E R S I T A S B O S O W A.
Wiranata, A. D., Soleman, S., Irwansyah, I., Sudaryana, I. K., & Rizal, R. (2023). Klasifikasi Data Mining Untuk Menentukan Kualitas Udara Di Provinsi Dki Jakarta Menggunakan Algoritma K-Nearest Neighbors (K-Nn). Infotech: Journal of Technology Information, 9(1), 95–100. https://doi.org/10.37365/jti.v9i1.164
Yustisio, D. (2022). Perbandingan Metode extreme Learning Machine (ELM) dan Metode Multilayer Perceptron (MLP) Dalam Prediksi Jumlah Pasien Covid-19 Kota Semarang.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Nita Cahyani, Wardiana Adinda Putri, Rahmat Irsyada

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.