Implementation of Business Intelligence In Planet Helmet Cilacap Sales
DOI:
10.47709/brilliance.v4i2.5012Keywords:
Helm, Indonesia, OLAP, ETL, SalesDimension Badge Record
Abstract
Helmets are used to anticipate serious injuries when traffic accidents occur. In several cities and villages, various helmet businesses have begun to emerge. The increasing number of residents and motorized vehicles in Indonesia provides business opportunities in the helmet business. The increasingly competitive business market challenges companies to be able to adapt to changing market conditions and diverse buyer needs. For this reason, companies must be able to respond quickly and accurately, consider the costs incurred to remain conducive, and have a strategy in decision-making that can provide solutions to changes in the current market situation to survive in the long term. Therefore, companies must be able to respond quickly and accurately, consider the costs incurred to remain conducive, and have a strategy in decision-making so that companies can survive in the long term. The implementation of business intelligence in this study uses the Online Analytical Processing (OLAP) method, namely the use of Extraction Transformation Loading (ETL), creating a data warehouse, analyzing data for users and user interfaces in the form of information visualization using the Laravel framework. Planet Helm currently needs to manage its sales data visualization digitally. This is an obstacle for leaders in managing inventory needs, and helmet sales are less effective and efficient, requiring the digitalization of web-based business intelligence management. The results of this study are in the form of a dashboard display consisting of a minimum of 7 stock widgets, average monthly sales, popular brand graphs, and monthly sales graphs.
Abstract viewed = 56 times
References
Achmad, M., Andre, & Susilawati, D. (2020). Penerapan Business Intelligence Data Superstore Dengan Menggunakan Metode OLAP. Algor, 2(1), 48–56. https://jurnal.ubd.ac.id/index.php/algor/article/view/460/263
Dewi, K. K., Hermawan, A., & Kusuma, L. W. (2021). Penerapan Dashboard Business Intelligence Untuk Menampilkan Fundamental Saham Lq45. Jurnal Algor, 3(1), 60–70. https://doi.org/10.31253/algor.v3i1.768
Handika, I. P. S., & Satyawati, I. G. A. A. A. (2022). Inplementasi Business Intelligence Dan Market Basket Analysis Untuk Analisa Data Penjulan Di Pt. Abc. Rabit?: Jurnal Teknologi Dan Sistem Informasi Univrab, 7(1), 37–42. https://doi.org/10.36341/rabit.v7i1.2091
JRP, M. (2014). Pentaho?: Solusi Open Source Untuk Membangun Data Warehouse. In Andi (Ed.), Andi Offset (1st ed.). Andi Offset.
Junaedi, I., Abdillah, D., & Yasin, V. (2020). Analisis Perancangan Dan Pembangunan Aplikasi Business Intelligence Penerimaan Negara Bukan Pajak Kementerian Keuangan Ri. JISAMAR (Journal of Information System, Applied, Management, Accounting and Researh), 4(3), 88. https://journal.stmikjayakarta.ac.id/index.php/jisamar/article/view/249/187
Karina, T., & , Mansuri, Anis Rohmadi, R. I. P. (2021). Implementasi Business Intellegence Untuk Data Penjualan Pada Toko Scalaris Makmur Menggunakan Aplikasi Tableau Dekstop. 7, 3–7.
Khan, M. A., Saqib, S., Alyas, T., Ur Rehman, A., Saeed, Y., Zeb, A., Zareei, M., & Mohamed, E. M. (2020). Effective Demand Forecasting Model Using Business Intelligence Empowered with Machine Learning. IEEE Access, 8, 116013–116023. https://doi.org/10.1109/ACCESS.2020.3003790
Khan, S., Qader, M. R., Ka, T., & Abimannan, S. (2020). Analysis of Business Intelligence Impact on Organizational Performance. In I. Xplor (Ed.), 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, ICDABI 2020 (pp. 9–12). IEEE. https://doi.org/10.1109/ICDABI51230.2020.9325610
Maulana, A., & Wulandari, D. A. N. (2019). Business Intelligence Implementation To Analyze Perfect Store Data Using the OLAP Method. SinkrOn, 3(2), 103. https://doi.org/10.33395/sinkron.v3i2.10036
Presman, roger s. (2015). Rekayasa perangkat lunak pendekatan praktisi. google.co.id.
Rahmawati, A. (2019). Pengaruh jumlah penduduk, jumlah kendaraan bermotor, PDRB per kapita dan kebijakan fiskal terhadap konsumsi energi minyak di Indonesia. Jurnal Pembangunan Dan Pemerataan (JPP), 10(1), 1–28. https://jurnal.untan.ac.id/index.php/jcc/article/download/46368/75676589695
Rizana, Ade Pratiwi Susanty, A. S. U. (2019). Sepeda Motor Di Dalam Area Kampus Universitas Lancang Kuning Menurut Undang-Undang Nomor 22 Tahun 2009 of Helmet for Student Riders Motorcycles in Campus Area Lancang Kuning University According To. Gagasan Hukum, 01(22), 189–198. https://dspace.uii.ac.id/bitstream/handle/123456789/45019/CE REFORM 2023 Hadi%2C dkk.pdf?sequence=1&isAllowed=y
Rudiawan, H. (2021). Pemanfaatan Sistem Bisnis Intelijen (Bi) Dalam Pengambilan Keputusan Manajemen Perusahaan. Jurnal Ekonomi, 23(3), 191.
Suardi, Muhajir, Auliah Andika Rukman, Raditya Feda Rifandhana, Hananto Widodo, T Nazaruddin, Sri Bakti Yunari, D. G. (2022). Pengetahuan Hukum, Pemahaman Hukum, Sikap Hukum dan Perilaku Hukum Pengemudi Ojek Online dalam Berlalu Lintas di Kecamatan Rappocini Kota Makassar. Jurnal Pendidikan PKN (Pancasila Dan Kewarganegaraan), 3(2), 129. https://doi.org/10.26418/jppkn.v3i2.51962
Suardi1), Takdir2), Muhajir3), Auliah Andika Rukman4), R. F. R., & Hananto Widodo6), T Nazaruddin7), Sri Bakti Yunari8), D. G. (2022). Jurnal Pendidikan PKN Pancasila dan Kewarganegaraan ONLINE DALAM BERLALU LINTAS DI KECAMATAN Jurnal Pendidikan PKN Pancasila dan Kewarganegaraan. 3(2), 129–142.
Widaningrum, A. H. (2018). Analisis Data Peminjaman Bank Menggunakan Metode OLAP (Online Analytical Processing). Jurnal Informatika Upgris (JIU), 4(1), 117–119. https://journal.upgris.ac.id/index.php/JIU/article/download/2347/1893
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Ginanjar Rizqi Setiani, Verry, Mochamad Taufiqurrochman Abdul Aziz Zein

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.