ac

Optimizing Customer Purchase Insights: Apriori Algorithm for Effective Product Bundle Recommendations

Authors

  • Ekinnisura Kaban Ganesha Education University, Indonesia
  • I Gede Mahendra Darmawiguna Ganesha Education University, Indonesia
  • Made Windu Antara Kesiman Ganesha Education University, Indonesia

DOI:

10.47709/brilliance.v4i2.4981

Keywords:

Apriori Algorithm, Data Mining, Minimum Confidence, Minimum Support, Purchase Pattern Analysis

Dimension Badge Record



Abstract

A retail store faces significant challenges in crafting effective sales strategies, particularly in designing promotional product bundles. To address this, the store leverages transaction data to analyze customer purchasing patterns, aiming to uncover products frequently bought together. This study employs data mining techniques, specifically the Apriori algorithm, to identify co-purchasing behaviors using 49,316 transaction records collected from January to June 2024. After thorough data cleaning and transformation, the Apriori algorithm identified 877 itemsets, spanning from frequent 1-itemsets to 4-itemsets. By setting a minimum support threshold of 0.003, the analysis narrowed down to 343 significant itemsets, including 325 frequent 1-itemsets and 18 frequent 2-itemsets, which served as the basis for generating association rules. Initially, 36 association rules were derived, highlighting various product relationships. To focus on impactful insights, the rules were filtered using a minimum confidence level of 0.5, yielding 3 highly relevant rules with lift ratios exceeding 1, indicating strong associations between antecedent and consequent products. These insights enable the store to design targeted promotional bundles, optimize product placement, and enhance overall sales performance. Additionally, this study demonstrates how data-driven strategies can provide a competitive edge by aligning with customer purchasing behaviors. To ensure continuous improvement, a Python-based system was developed, empowering the store to independently analyze transaction data and refine sales strategies in real time, adapting to evolving purchasing patterns as the dataset grows.

Google Scholar Cite Analysis
Abstract viewed = 13 times

References

Aisyah, S., & Normah, N. (2019). Penerapan Algoritma Apriori Terhadap Data Penjualan Di Swalayan Koperasi Bappenas Jakarta Pusat. Paradigma - Jurnal Komputer Dan Informatika, 21(2), 235–242. https://doi.org/10.31294/p.v21i2.6205

Amsury, F., Kurniawati, I., & Rizki Fahdia, M. (2023). Implementasi Association Rules Menentukan Pola Pemilihan Menu Di the Gade Coffee & Gold Menggunakan Algoritma Apriori. INFOTECH Journal, 9(1), 279–286. https://doi.org/10.31949/infotech.v9i1.5357

Aquila, A., Pabendon, C., & Purnomo, H. D. (2023). JURNAL MEDIA INFORMATIKA BUDIDARMA Penerapan Algoritma Apriori dan FP-Growth Untuk Market Basket Analisis Pada Data Transaksi NonPromo. 7, 975–984. https://doi.org/10.30865/mib.v7i3.6153

Arinal, V., & Melani, M. A. (2023). Penerapan Metode Asosiasi Pada Data Penjualan Transaksi Menggunakan Algoritma Apriori (Studi Kasus Circle’K Apartemen Marabella Jakarta Selatan). Jurnal Sains Dan Teknologi, 5(1), 170–176. http://ejournal.sisfokomtek.org/index.php/saintek/article/view/1366%0Ahttp://ejournal.sisfokomtek.org/index.php/saintek/article/download/1366/1010

Aulia Miranda, S., Fahrullah, F., & Kurniawan, D. (2022). Implementasi Association Rule Dalam Menganalisis Data Penjualan Sheshop dengan Menggunakan Algoritma Apriori. Metik Jurnal, 6(1), 30–36. https://doi.org/10.47002/metik.v6i1.342

Fahrudin, N. F. (2019). Penerapan Algoritma Apriori untuk Market Basket Analysis. MIND Journal, 1(2), 13–23. https://doi.org/10.26760/mindjournal.v4i1.13-23

Hakim, A. R. (2023). Analisis Pola Pembelian Konsumen di Alfamart dengan Menggunakan Algoritma Apriori. Jurnal Desain Dan Analisis Teknologi, 193–199. http://journal.aptikomkepri.org/index.php/JDDAT/article/view/38%0Ahttp://journal.aptikomkepri.org/index.php/JDDAT/article/download/38/28

Ismasari, I., Ramadhan, M., & Hadikristanto, W. (2020). Analisis Tingkat Pembelian Konsumen dengan Algoritma Apriori. Jurnal Ilmiah Intech?: Information Technology Journal of UMUS, 2(02). https://doi.org/10.46772/intech.v2i02.292

Juriyanto, W. (2023). Penerapan Teknik Data Mining Menggunakan Algoritma Apriori pada Proses Penjualan di Toko Sembako. EJECTS: Journal Computer, Technology and Informations System, 3(1), 8–14.

Mahardika, I. K. R. (2023). Meningkatkan Keputusan Pembelian dengan Product Bundling , In Store Display , dan Diskon. 3(12), 2399–2412.

Prasetya, T., Yanti, J. E., Purnamasari, A. I., Dikananda, A. R., & Nurdiawan, O. (2022). Analisis Data Transaksi Terhadap Pola Pembelian Konsumen Menggunakan Metode Algoritma Apriori. INFORMATICS FOR EDUCATORS AND PROFESSIONAL?: Journal of Informatics, 6(1), 43. https://doi.org/10.51211/itbi.v6i1.1688

Qisman, M., Rosadi, R., & Abdullah, A. S. (2021). Market basket analysis using apriori algorithm to find consumer patterns in buying goods through transaction data (case study of Mizan computer retail stores). Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012020

Qoniah, I., & Priandika, A. T. (2020). Analisis Market Basket Untuk Menentukan Asossiasi Rule Dengan Algoritma Apriori (Studi Kasus: Tb.Menara). Jurnal Teknologi Dan Sistem Informasi, 1(2), 26–33. https://doi.org/10.33365/jtsi.v1i2.368

Robby Setiawan, R., & Jananto, A. (2021). Implementasi Data Mining Untuk Rekomendasi Penyedia Pupuk Non Subsidi Dengan Menggunakan Metode Algoritma Apriori. Jurnal TEKNO KOMPAK, 17(1), 13–24.

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic?: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-11-19
Accepted Date: 2024-11-19
Published Date: 2024-11-30

How to Cite

Kaban, E., Darmawiguna, I. G. M. ., & Kesiman, M. W. A. . (2024). Optimizing Customer Purchase Insights: Apriori Algorithm for Effective Product Bundle Recommendations. Brilliance: Research of Artificial Intelligence, 4(2), 747-756. https://doi.org/10.47709/brilliance.v4i2.4981