Leveraging Machine Learning for Sentiment Analysis in Hotel Applications: A Comparative Study of Support Vector Machine and Random Forest Algorithms
DOI:
10.47709/brilliance.v4i2.4877Keywords:
Sentiment Analysis, User Reviews, Google Play Store, Support Vector Machine, Random ForestDimension Badge Record
Abstract
This research aims to conduct sentiment analysis on user reviews of hotel booking applications such as Trivago, Tiket, Booking, Traveloka, and Agoda, collected from the Google Play Store. The dataset used consists of 5,000 user reviews, with 80% of the data allocated for training and 20% for testing. Two algorithms applied in this study are Support Vector Machine (SVM) and Random Forest, with performance evaluation based on accuracy, precision, recall, and F1-score metrics. The test results show that the Random Forest algorithm delivers the best performance on the Trivago application with 94% accuracy, 94% precision, 100% recall, and a 97% F1-score. Random Forest proves to be more effective in handling diverse review data, while the Support Vector Machine (SVM) algorithm also produces good results in sentiment classification. This research contributes to the development of sentiment analysis based on user reviews, which can be utilized by app developers and hotel management to improve service quality and user experience.
Abstract viewed = 59 times
References
Amira, S. A., Utama, S., & Fahmi, M. H. (2020). Penerapan Metode Support Vector Machine untuk Analisis Sentimen pada Review Pelanggan Hotel. Edu Komputika, 7(2), 40-48. Universitas Negeri Semarang.
Armykav, R., Mantoro, T., Ayu, M. A., & Asian, J. (2023). Sentiment Analysis CNN Indonesia App Reviews on Play Store Using Naive Bayes Algorithm. International Conference on Technology, Engineering, and Computing Applications (ICTECA), IEEE, pp. 1-5.
Baskoro, B. B., Susanto, I., & Khomsah, S. (2021). Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TripAdvisor). Journal of Informatics, Information System, Software Engineering and Applications, 3(2), 21-29.
Lam, C., & Law, R. (2019). Readiness of upscale and luxury-branded hotels for digital transformation. International Journal of Hospitality Management, 79, 60-69.
Alhamdi, R. (2023). Pengaruh online review dan harga terhadap keputusan pemesanan kamar hotel di online travel agent (Studi kasus kota Batam). Jurnal Manajemen Perhotelan, 9(2), 63-70.
Azzahra, Z. F., Andreswari, R., & Hasibuan, M. A. (2020). Sentiment analysis website of online hotel booking application reviews using the Naive Bayes algorithm. In 2020 6th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia (pp. 1-6).
Chen, M., Xu, H., Wu, Y., & Wu, J. (2024). Sentiment Analysis of Hotel Reviews based on BERT and XGBoost. International Conference on Computer Technologies (ICCTech).
Hardian, R., Oktaviana, L. D., & Hamdi, A. (2024). Sentiment analysis of pegipegi.com on Google Playstore with Naïve Bayes algorithm. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 10(3), 583–590.
Khan, T. A., Sadiq, R., Shahid, Z., Alam, M. M., & Su'ud, M. B. M. (2024). Sentiment analysis using Support Vector Machine and Random Forest. Journal of Informatics and Web Engineering, 3(1), 67-75.
Mishra, R. K., Urolagin, S., & Jothi, A. A. (2019). A Sentiment analysis-based hotel recommendation using TF-IDF Approach. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) (pp. 811-815).
Nalawati, R. E., Liliana, D. Y., Nugrahani, F., Abiyanka, F. H., & Karrel, R. (2022). Sentiment Analysis on Tripadvisor Hotel Review using Named Entity Recognition. International Conference on Information and Communications Technology (ICOIACT).
Pangestu, V. C., Adiwijaya, & Purbolaksono, M. D. (2022). Sentiment Analysis on Hotel Review in Bandung from Website Agoda Using KNN Algorithm. International Conference on Software Engineering and Information Technology (ICoSEIT).
Priyantina, R. A., & Sarno, R. (2019). Sentiment analysis of hotel reviews using latent Dirichlet allocation, semantic similarity, and LSTM. International Journal of Intelligent Engineering and Systems, 12(4), 130-136.
Simarmata, A. R., & Zakariyah, M. (2023). Sentiment Analysis of Hotel Reviews Using Support Vector Machine. Indonesian Journal of Computer Science, 12(5), 2603-2609.
Wardani, S. K., & Ruldeviyani, Y. (2021). Sentiment Analysis of Visitor Reviews on Hotel in West Sumatera. International Workshop on Big Data and Information Security (IWBIS).
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Suryadi, Dedek Syahputra , Nica Astrianda, Rizki Agam Syahputra, Rivansyah Suhendra
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.