Association Rule to Increase Sales Using the Apriori Algorithm Method

Authors

  • Ermanto Ermanto Universitas Pelita Bangsa, Indonesia
  • Abdul Halim Anshor Universitas Pelita Bangsa, Indonesia
  • Asep Arwan Sulaeman Universitas Pelita Bangsa, Indonesia
  • Sri Winarni Universitas Pelita Bangsa, Indonesia

DOI:

https://doi.org/10.47709/brilliance.v4i1.4185

Keywords:

Data Mining, Association Rule, Apriori Algorithm, Sales

Abstract

The Apriori algorithm is a data mining technique used to find relationship patterns between items in a transaction dataset. In this context, the Apriori algorithm will be used to identify products that are often purchased simultaneously by customers. By understanding these purchasing patterns, companies can design more effective marketing strategies, such as strategic product placement, bundling package offers, and special promotions. This research involves several stages, starting from collecting sales transaction data, data preprocessing, applying the Apriori algorithm, to interpreting the results. The transaction data used is taken from the sales database of a retail store during a certain period. After the data is processed, the Apriori algorithm is applied to identify frequent itemsets and form association rules. The results of this research show that there are several significant purchasing patterns, such as a combination of product A and product B which are often purchased together. By applying data mining using the a priori algorithm method, you can find out which products sell the most. From the results of manual calculations it was found that consumers who bought RB 1060 would buy RB 1099 with 81% confidence, whereas using WEKA it was found that consumers who bought RB 1060 would buy RB 1099 with a confidence value of 82%.

References

Akbar, R., Sukmawati, U. S., & Katsirin, K. (2024). Analisis Data Penelitian Kuantitatif. Jurnal Pelita Nusantara, 1(3), 430–448. https://doi.org/10.59996/jurnalpelitanusantara.v1i3.350

Ariyani, M. (2021). Mekanisme Pengelolaan Persediaan Sparepart Sepeda Motor Honda Pada PT. Bintang Motor Jaya, Tbk Cabang Cirebon. Exchall: Economic Challenge, 2(1), 71–105. https://doi.org/10.47685/exchall.v2i1.101

Bimantoro, T., & Wardhani, A. K. (2020). IMPLEMENTASI ALGORITMA PARTITIONING AROUND MEDOIDS DALAM PENGELOMPOKAN RESTORAN. Indonesian Journal of Technology, Informatics and Science (IJTIS), 2(1), 33–36. https://doi.org/10.24176/ijtis.v2i1.5651

Erwansyah, K., Andika, B., & Gunawan, R. (2021). Implementasi Data Mining Menggunakan Asosiasi Dengan Algoritma Apriori Untuk Mendapatkan Pola Rekomendasi Belanja Produk Pada Toko Avis Mobile. J-SISKO TECH (Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD), 4(1), 148. https://doi.org/10.53513/jsk.v4i1.2628

Erwin Stanley Harianja. (2020). Pengembangan Media Penyimpanan dalam Sistem Berkas (Studi Kasus Mahasiswa STMIK Eresha). Jurnal Ilmu Komputer, 3(2), 5–9.

Firdaus, A. A., Iksan, N., Sadiah, D. N., Sagita, L., & Setiawan, D. (2021). Penerapan Algoritma Apriori untuk Prediksi Kebutuhan Suku Cadang Mobil. Jurnal Sistem Dan Teknologi Informasi (Justin), 9(1), 13. https://doi.org/10.26418/justin.v9i1.41151

Husdi, H., & Dalai, H. (2023). Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi. Jurnal Informatika, 10(2), 129–135. https://doi.org/10.31294/inf.v10i2.14129

Hutasuhut, M., Octavina, D., & Halim, J. (2019). Penerapan Data Mining dalam Menganalisa Pola Kelayakan Siswa Pada Kelas Unggulan Menggunakan Algoritma Iterative Dichotomiser 3 (ID3) pada SMP N. 2 Rantau Selatan. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 18(2), 154. https://doi.org/10.53513/jis.v18i2.154

Kharis, S. A. A., & Zili, A. H. A. (2022). Learning Analytics dan Educational Data Mining pada Data Pendidikan. JURNAL RISET PEMBELAJARAN MATEMATIKA SEKOLAH, 6(1), 12–20. https://doi.org/10.21009/jrpms.061.02

Mulya, M. F., Rismawati, N., & Alifi, R. R. (2019). ANALISIS DAN IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENINGKATKAN PENJUALAN PADA KANTIN UNIVERSITAS TANRI ABENG. Faktor Exacta, 12(3), 210. https://doi.org/10.30998/faktorexacta.v12i3.4541

Priyanka Aggarwal. (2019). Impact of Corporate Governance on Corporate Financial Performance. IOSR Journal of Business and Management, 13(3), 1–5.

Putri Mai Sarah Tarigan, Jaya Tata Hardinata, Hendry Qurniawan, Muhammad Safii, & Riki Winanjaya. (2022). IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN BARANG (STUDI KASUS?: TOKO SINAR HARAHAP). Jurnal Sistem Informasi, Teknologi Informasi Dan Komputer, 12(2), 51–61.

Ratih Wahyuningrum. (2018). ANALISIS STRATEGI E-MARKETING UNTUK MENINGKATKAN MINAT BELI ONLINE. Jurnal Manajemen Bisnis, 21(3), 275–290.

Saefudin, S., & DN, S. (2019). PENERAPAN DATA MINING DENGAN METODE ALGORITMA APRIORI UNTUK MENENTUKAN POLA PEMBELIAN IKAN. JSiI (Jurnal Sistem Informasi), 6(2), 36. https://doi.org/10.30656/jsii.v6i2.1587

Sibarani, A. J. P. (2020). Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 262–276. https://doi.org/10.35957/jatisi.v7i2.195

Sutrisno, S. (2020). PENERAPAN ALGORITMA APRIORI UNTUK MENCARI POLA PENJUALAN PRODUK DANA PADA PT BANK RAKYAT INDONESIA (PERSERO) TBK KANCA JAKARTA PASAR MINGGU. Jurnal Sistem Informasi Dan Informatika (Simika), 3(1), 12–26. https://doi.org/10.47080/simika.v3i1.834

Syaipul Amri. (2018). Pengaruh Kepercayaan Diri (Self Confidence) Berbasis Ekstrakurikuler Pramuka Terhadap Prestasi Belajar Matematika Siswa Sma Negeri 6 Kota Bengkulu . Jurnal Pendidikan Matematika Raflesia, 3(2), 78–85.

Tualeka, S., Alameka, F., & Wanti Wulan Sari, N. (2021). IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI PENJUALAN DAN PENEMPATAN STOK BARANG PADA CV PASTI JAYA HOUSEWARE DENGAN MENGGUNAKAN ALGORITMA APRIORI. SEMINASTIKA, 3(1), 115–123. https://doi.org/10.47002/seminastika.v3i1.258

Wahyuni, S., Sulistianingsih, I., Hermansyah, Hariyanto, E., & Cindi Veronika Lumbanbatu, O. (2021a). Data Mining Prediksi Minat Customer Penjualan Handphone Dengan Algoritma Apriori. JURNAL UNITEK, 14(2), 10–19. https://doi.org/10.52072/unitek.v14i2.243

Wahyuni, S., Sulistianingsih, I., Hermansyah, Hariyanto, E., & Cindi Veronika Lumbanbatu, O. (2021b). Data Mining Prediksi Minat Customer Penjualan Handphone Dengan Algoritma Apriori. JURNAL UNITEK, 14(2), 10–19. https://doi.org/10.52072/unitek.v14i2.243

Wijaya, A., Faqih, A., Solihudin, D., Rohmat, C. L., & Eka Permana, S. (2024). PENERAPAN ASSOCIATION RULES MENGGUNAKAN ALGORITMA APRIORI UNTUK IDENTIFIKASI POLA PEMBELIAN. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3871–3878. https://doi.org/10.36040/jati.v7i6.8270

Downloads

Published

2024-07-08

How to Cite

Ermanto, E., Halim Anshor, A., Arwan Sulaeman, A., & Winarni, S. (2024). Association Rule to Increase Sales Using the Apriori Algorithm Method. Brilliance: Research of Artificial Intelligence, 4(1), 321–331. https://doi.org/10.47709/brilliance.v4i1.4185

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.