Prediction of Employee Assessments for Contract Extensions at PT Sagateknindo Sejati Using the Naïve Bayes Algorithm
DOI:
https://doi.org/10.47709/brilliance.v4i1.4170Keywords:
Employees, Assessment, Data Mining, Naïve Bayes AlgorithmAbstract
Companies must be selective in conducting employee assessments in order to retain employees with the best performance. When assessing employee performance, it is seen from their perseverance and discipline. However, in reality, good employee performance sometimes gets bad reviews and even gets reprimanded by their superiors. This is caused by the employee assessment monitoring system used, namely only personal assessment without using an assessment system and the data collected is less than optimal. This research uses the Naive Bayes method to process data using a data mining algorithm to obtain predictions that can be used as additional references in making employee performance assessment decisions. Aims to predict employee assessments of contract extensions at PT Sagateknindo Sejati. This research is important because it helps in making more accurate decisions regarding employee contract extensions based on existing historical data. Naive Bayes is a data processing algorithm that is classified as a calculation that is easy to understand but its accuracy results are reliable. It is used because it is efficient in managing data with various attributes and is able to produce predictions based on the probability of each existing attribute. The data used in this research includes various variables, using the Rapidminer supporting application to test the accuracy of the system created. Testing was carried out by preparing 320 data and testing 50 randomly selected data. Test data will be analyzed using the Rapidminer supporting application. The test results produced an accuracy of 83.96%.
References
Ayu Prihatini, & Sulindawaty Sulindawaty. (2020). Sistem Pendukung Keputusan Pemilihan Pegawai Teladan Kementerian Agama Kabupaten Deli Serdang Dengan Metode Analitic Hierarchy Process. Jurnal Sistem Informasi Kaputama (JSIK), 4(1), 29–34.
Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa. IJCIT (Indonesian Journal on Computer and Information Technology), 6(2). https://doi.org/10.31294/ijcit.v6i2.10438
Fauzi, A., & Yunial, A. H. (2022). Optimasi Algoritma Klasifikasi Naive Bayes, Decision Tree, K – Nearest Neighbor, dan Random Forest menggunakan Algoritma Particle Swarm Optimization pada Diabetes Dataset. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(3), 470. https://doi.org/10.26418/jp.v8i3.56656
Haya Pangestu, B. (2023a). Data Mining Menggunakan Algoritma Naïve Bayes Classifier Untuk Evaluasi Kinerja Karyawan. Jurnal Riset Matematika, 177–184. https://doi.org/10.29313/jrm.v3i2.2837
Haya Pangestu, B. (2023b). Data Mining Menggunakan Algoritma Naïve Bayes Classifier Untuk Evaluasi Kinerja Karyawan. Jurnal Riset Matematika, 177–184. https://doi.org/10.29313/jrm.v3i2.2837
Ignatius Joko Dewanto, Nur Aziz, & Wahyu Darmawan. (2023). Sistem Pendukung Keputusan Pemilihan Perpanjangan Kontrak Kerja Karyawan dengan Metode SMART. MAMEN: Jurnal Manajemen, 2(1), 9–21. https://doi.org/10.55123/mamen.v2i1.903
Indah Indah Kurniawati, Asep Muhidin, & Fibi Eko Putra. (2024). Klasifikasi Perpanjangan Kontrak Karyawan Pada PT Milpo Menggunakan Algoritma Naive bayes. Riset Dan E-Jurnal Manajemen Informatika Komputer, 8(1), 249–259.
Nani Agustina, Entin Sutinah, & Martini. (2024). Kolaborasi Metode Naive Bayes dan MPE dalam Pengambilan Keputusan Pemilihan Supplier Ban Motor . JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 1097–1108.
Rahmat S, K., Kanedi, I., & Fredricka, J. (2023). Application of the Naive Bayes Method in the Classification of Employee Status at PT. Prosperous New Light. Jurnal Media Computer Science, 2(1). https://doi.org/10.37676/jmcs.v2i1.3395
Rizqi Irawan, F. (2022). ANALISIS SENTIMEN TERHADAP PENGGUNA GOJEK MENGGUNAKAN METODE K-NEARSET NEIGHBORS. JIKO (Jurnal Informatika Dan Komputer), 5(1), 62–68. https://doi.org/10.33387/jiko.v5i1.4267
Romadloni, P., Adhi Kusuma, B., & Maulana Baihaqi, W. (2022). KOMPARASI METODE PEMBELAJARAN MESIN UNTUK IMPLEMENTASI PENGAMBILAN KEPUTUSAN DALAM MENENTUKAN PROMOSI JABATAN KARYAWAN. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 622–628. https://doi.org/10.36040/jati.v6i2.5238
Sari, E. P., & Yuningsih, Y. (2022). Hasil Keberhasilan Penerimaan Karyawan Baru Menggunakan Metode Naïve Bayes. Jurnal Teknologi Informatika Dan Komputer, 8(1), 300–317. https://doi.org/10.37012/jtik.v8i1.909
Siagian, E. R., & Tarihoran, D. (2023). Implementasi Algoritma Naïve Bayes Classifier Dalam Penerimaan Karyawan. BEES: Bulletin of Electrical and Electronics Engineering, 3(1), 49–56. https://doi.org/10.47065/bees.v3i1.3169
Widiyaningrum, D. K., Septiani, R., Larasati, P., & Wibowo, A. (2020). Algoritma Naive Bayes untuk Menentukan Kelayakan Perpanjangan Kontrak pada PT. Gemilang. Jurnal Ilmu Komputer Dan Bisnis, 11(2), 2441–2445. https://doi.org/10.47927/jikb.v11i2.5
Winda Yulianti, Wiyanto, W., & Nisa Nurhidayanti. (2023). APPLICATION OF DATA MINING USING NAIVE BAYES ALGORITHM FOR CLASSIFICATION OF EMPLOYEE CONTRACT EXTENSION AT PT TORINI JAYA ABADI. Jurnal Informatika Teknologi Dan Sains (Jinteks), 5(3), 516–524. https://doi.org/10.51401/jinteks.v5i3.3348
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Candra Naya, Arif Siswandi, Sufajar Butsianto, Febriyanti Febriyanti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.