Application of the K-Nearest Neighbor Machine Learning Algorithm to Preduct Sales of Best-Selling Products

Authors

  • Muhtajuddin Danny Universitas Pelita Bangsa, Indonesia
  • Asep Muhidin Universitas Pelita Bangsa, Indonesia
  • Akhiratul Jamal Universitas Pelita Bangsa, Indonesia

DOI:

https://doi.org/10.47709/brilliance.v4i1.4063

Keywords:

K-Nearest Neighbor ALgorithm, Machine Learning, Sales

Abstract

The development of increasingly intense competition in the business world, accompanied by advances in information technology, has brought retail companies into a situation of tighter and more open competition. PT LG Innotek Indonesia is the only company that produces tuners in Indonesia. Looking at consumer demand, PT LG Innotek must improve product quality, and add products that consumers like and frequently purchase. For this reason, PT LG Innotek Indonesia needs an analysis that can help the company identify products that tend to sell well. This analysis can be carried out through the application of machine learning algorithms, especially the K-Nearest Neighbor method. The aim of this research is to find out how the KNN algorithm performs in predicting products that are selling well and not selling well at PT LG Innotek Indonesia. Based on the analysis results, prediction results were obtained with an accuracy level of 94.74% and an error rate of 5.26%. With this high level of accuracy and low error rate, it can be concluded that the K-Nearest Neighbor method is effectively used to predict sales of PT LG Innotek Indonesia's best-selling products.

References

A. A. Leasiwal, A. M. Andrian, & I. V Masala. (2021). Implementasi Algoritma C4. 5 Untuk Klasifikasi Harga Emas. Universitas Katolik De La Salle.

Ari Sanjaya, & Tri Wahyana. (2022). Penerapan Metode K-Nearest Neighbour Untuk Sistem Prediksi Kelulusan Siswa MTs Nurul Muslimin Berbasis Website. Journal Transformation of Mandalika, 3(2), 31–47.

Azis, A., Zy, A. T., & Sunge, A. S. (2024a). Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(1), 117–124. https://doi.org/10.47233/jteksis.v6i1.1078

Azis, A., Zy, A. T., & Sunge, A. S. (2024b). Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(1), 117–124. https://doi.org/10.47233/jteksis.v6i1.1078

Dewi, S. P., Nurwati, N., & Rahayu, E. (2022a). Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor. Building of Informatics, Technology and Science (BITS), 3(4), 639–648. https://doi.org/10.47065/bits.v3i4.1408

Dewi, S. P., Nurwati, N., & Rahayu, E. (2022b). Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor. Building of Informatics, Technology and Science (BITS), 3(4), 639–648. https://doi.org/10.47065/bits.v3i4.1408

Febriana Santi Wahyuni. (2024). Penerapan Teknik Data Mining untuk Menentukan Rencana Strategi Penjualan. JUPITER (Jurnal Pendidikan Teknik Elektro), 7(1), 47–54.

Harahap, F., Fahrozi, W., Adawiyah, R., Siregar, E. T., & Harahap, A. Y. N. (2023). Implementasi Data Mining dalam Memprediksi Produk AC Terlaris untuk Meningkatkan Penjualan Menggunakan Metode Naive Bayes. JURNAL UNITEK, 16(1), 41–51. https://doi.org/10.52072/unitek.v16i1.541

Herlambang, H. P., Saputra, F., Prasetiyo, M. H., Puspitasari, D., & Nurlaela, D. (2023). Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor. Jurnal INSAN - Journal of Information System Management Innovation, 3(1), 21–28. https://doi.org/10.31294/jinsan.v3i1.2097

Ike Yolanda, & Hasanul Fahmi. (2021). Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT.Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor. Jurnal Ilmu Komputer Dan Sistem Informasi, 3(1), 9–15.

Mhd Angga Sabda, & Suhardi Suhardi. (2023). Implementasi Data Mining Dalam Memprediksi Penjualan Parfum Terlaris Menggunakan Metode K-Nearest Neighbor. Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), 415–422.

Nolly, R. A., Fitria, A., & Saputra S, K. (2023). Penerapan Algoritma K-Nearest Neighbors untuk Klasifikasi Fragmen Metagenom Berdasarkan Ekstraksi Fitur K-Mers. Informatika Mulawarman?: Jurnal Ilmiah Ilmu Komputer, 17(1), 52. https://doi.org/10.30872/jim.v17i1.5779

Nur Fajri, F., Tholib, A., & Yuliana, W. (2022). Application of Machine Learning Algorithm for Determining Elective Courses in Informatics Study Program. Jurnal Teknik Informatika Dan Sistem Informasi, 8(3). https://doi.org/10.28932/jutisi.v8i3.3990

Prastiwi, H., Jeny Pricilia, & Errissya Rasywir. (2022). Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 2(1), 141–148. https://doi.org/10.33998/jakakom.2022.2.1.34

Rifky, L., Nugraha, Z., Saputra, B., Pratama, D., Raswir, E., & Pratama, Y. (2022). Implementasi Data Mining Untuk Penjualan Mobil Menggunakan Metode Naive Bayes. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 2(2), 225–230. https://doi.org/10.33998/jakakom.2022.2.2.109

Rizki, F., Faisol, A., & Santi Wahyuni, F. (2020). PENERAPAN METODE NAIVE BAYES UNTUK MEMPREDIKSI PENJUALAN PADA UD. HIKMAH PASURUAN BERBASIS WEB. JATI (Jurnal Mahasiswa Teknik Informatika), 4(1), 26–34. https://doi.org/10.36040/jati.v4i1.2379

Rosidi, R. P. M., & Setiawan, K. (2024). Implementasi Algoritma Naïve Bayes Terhadap Data Penjualan untuk Mengetahui Pola Pembelian Konsumen pada Kantin. Jurnal Indonesia?: Manajemen Informatika Dan Komunikasi, 5(1), 120–126. https://doi.org/10.35870/jimik.v5i1.407

Rozzi Kesuma Dinata, & Novia Hasdyna. (2020). Machine Learning (Dr., Fajriana, & M. Si. S.Si, Eds.; Vol. 7). Unimal Press.

Sari, R., & Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website. Indonesian Journal on Software Engineering (IJSE), 5(2), 51–60. https://doi.org/10.31294/ijse.v5i2.6957

Wardani, N. W., Nugraha, P. G. S. C., & Mahendra, G. S. (2024). Implementasi Naïve Bayes Pada Data Mining Untuk Mengklasifikasikan Penjualan Barang Terlaris Pada Perusahaan Ritel. JST (Jurnal Sains Dan Teknologi), 12(3). https://doi.org/10.23887/jstundiksha.v12i3.38605

Downloads

Published

2024-06-28

How to Cite

Danny, M., Muhidin, A. ., & Jamal, A. . (2024). Application of the K-Nearest Neighbor Machine Learning Algorithm to Preduct Sales of Best-Selling Products. Brilliance: Research of Artificial Intelligence, 4(1), 255–264. https://doi.org/10.47709/brilliance.v4i1.4063

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.