Bussiness Management System Of Catfish Cultivation Using Fuzzy Inference System Tsukamoto Methods
DOI:
https://doi.org/10.47709/brilliance.v3i2.3619Keywords:
Catfish, Cultivation, Fuzzy, Harvest, Tsukamoto Methods, PredictionAbstract
Catfish is a type of freshwater fish that is in great demand among people because it has high nutritional value. The high demand for catfish on the market is a promising business opportunity. The relatively fast maintenance period makes this cultivation much in demand. Management of a catfish farming business requires good strategy and planning so that the business process can provide optimal profits. Appropriate management practices, good planning can predict crop yields with minimal error rates. Based on past data from catfish farming businesses, catfish pond production results are influenced by several factors including pond area, number of seeds, and amount of feed. The catfish cultivation management system produces predictions of catfish harvest but ignores weather conditions, natural disasters and infectious diseases. The method used in crop yield prediction management is the Tsukamoto Fuzzy inference system. The Tsukamoto method applies monotonous reasoning and rules are built using expert knowledge, enabling the system to be able to conclude and manage predictions of catfish harvest based on data regarding pond size, number of seeds and amount of feed. System testing using 10 data shows prediction results obtained through manual calculations and system calculations, resulting in identical results. Further testing uses the white box method to ensure that the data implemented in the Tsukamoto fuzzy management system accurately produces logical decisions. Hence, it can be concluded that the management system using the Tsukamoto method is able to show effective performance in predicting harvest results based on data on pond area, number of seeds and amount of feed consumption. This management system is expected to be able to provide recommendations for catfish cultivation business planning for the community.
References
A Fachri, T. H. (2021). Sistem Informasi Manajemen Pembudidayaan Ikan Lele Menggunakan Metode Reseach and Development. Jurnal Sistim Informasi vol 11 no 1, 53-58.
Burhanuddin Alli Ahmadi, H. T. (2020). Perancangan user experience aplikasi mobile penunjang budidaya ikan lele menggunakan human centered design. Journal Pengembangan Teknologi Informasin dan Ilmu Komputer Vol 4 No 12, 4300-4308.
Denny Jatnika, K. S. (2014). Pengembangan Usaha Budidaya Ikan Lele ( Clarias Sp.) di Lahan Kering Kabupaten Gunung Kidul Provinsi D.I. Yogyakarta. Manajemen IKM, 96-105.
Fadhilah, N. (2023). Optimaslisasi Budidaya Ikan Lele Melalui Integrasi Budidaya Sayuran Menggunakan Sistem Akuaponik. Journal Of Character Education Society Vol VI No 4, 711-721.
Fika Dewi Pratiwi, E. J. (2020). Edukasi Budidaya Ikan Lele Kolam Terpal di Panti Asuhan Nurul Ikhsan Merwang Kabupaten Bangka. Agrokreatif Jurnal Ilmiah Pengabdian Kepada Masyarakat, 269-275.
Irmansyah, A. (2021). Penerapan Metode Fuzzy Tsukamoto Untuk Prediksi Jumlah Produksi Cabai. Jurnal Ilmiah Teknologi dan Sains, 27-30.
J Panjaitan, J. F. (2020). Fuzzy Inference system pada produksi bibit ikan nila menggunakan algoritma Tsukamoto. Jurnal Penerapan Sstem Informasi Komputer Manajemen, 83-86.
KBBI. (2015, October 23). kemdikbud.go.id/. Diambil kembali dari kbbi.kemdikbud.go.id/: https://kbbi.kemdikbud.go.id/
Kusumadewi, S. (2003). Artificial Intelligent (teknik dan aplikasinya). Jogjakarta: Graha Ilmu.
Lenisa U, S. A. (2023). Prediksi Harga Cabai Menggunakan Fuzzy Time Series Model Chen. Jurnal Rekayas Teknologi dan Komputasi I(2), 1-16.
Mohammad Riza Radyanto, E. P. (2020). Pengembangan Sistem Usaha Pendampingan Usaha Berkelanjutan Bagi UMKM Berbasis Sistem Manajemen Kinerja. OPSI Jurnal Optimasi Sistem Industri Vol 13 No 1, 17-24.
Muhammad Azhari, A. F. (2017). Aplikasi Pemilihan Bibit Ikan Air Tawar Menggunakan Metode MOORA-Enthropy. QUERY Jurnal Sistem Informasi Vol 1 No 2, 63-72.
Noviar, R. A. (2021, March 6). Potensii perikanan, Konsumsi Ikan, dan Kehidupan Nelayan. Detik news.
R.M. Putra, M. U. (2021). Sistim Analisa Finansial Usaha Budidaya Ikan Lele Dengan Metode Tsukamoto. Jurnal Informatika dan Komputer Vol 1 No 2.
Rozikin, N. M. (2021). Rancang bangun aplikasi investasi Budidaya Ikan Lele Berbasis Finite State Automata. Journal of Economic and Bussines Engineering Vol 3 No 1, 154-159.
Rusnandari Retno Cahyani, A. R. (2017). Optmalisasi Lahan PekarangaNn Dengan Budidaya Ikan Lele Untuk Meningkatkan Pendapatan Masyarakat. Prosiding Seminar Nasional Publikasi Hasil-hasil Penelitian Dan Pengabdian Masyarakat, 622-628.
Sri Kusumadewi, H. P. (2010). AplikasiLogika Fuzzy Untuk Pendukung Keputusan . Yogyakarta: Graha Ilmu.
Tejash U. Chaudari, V. B. (2023). Comparative of Mamdani, Larsen And Tsukamoto. International Journal of Scientist And Research Archive, 9 (1), 517-523.
Yudha Prasetya Anza, I. R. (2021). Pengembangan aplikasi manajemen kelayakan budidaya panen ikan lele berbasis website. JPTIIK Vol 5 No 11, 4724-4733.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sugianti Sugianti, Angga Prasetyo, Agnes Triananda

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.