The role of the number of transparent covers in enhancing the efficiency of flat plate collectors
DOI:
10.47709/brilliance.v4i1.3514Keywords:
Solar collector, transparent cover, inlet temperature, mass flow rate, thermal efficiency, optical efficiencyDimension Badge Record
Abstract
Solar energy has gained traction as an eco-friendly alternative to combat Carbon dioxid (CO2) emissions from fired-fossil fuel electrical power plants. One common application is converting solar energy into heat for water heating systems, often achieved through flat-plate solar heating collectors. The usefull thermal energy of these collectors depends on factors like climate, design, and operational parameters. This study examines the effect of number of transparent covers (TCs) and the inlet water temperature on the performance of a liquid-flat plate solar collector (LFPSC) in Beida city, Libya, on July 21, 2020, with data collected at hourly intervals. Different scenarios were considered, varying the number of covers (ranging from 0 to 3) and the inlet water temperatures (ranging from 25°C to 50°C). The findings reveal that the optimal number of covers is influenced by multiple factors, not solely the prevailing climatic conditions. Inlet water temperature and the collector's length were identified as the most influential parameters affecting the over all performance of LFPSC. Consequently, the decision to employ a specific number of covers depends on the system's operating conditions. When the inlet water temperature matches the ambient temperature, a single cover suffices for optimal collector performance. However, if the inlet water temperature surpasses the ambient temperature, multiple covers are necessary to achieve the collector's peak efficiency. This research underscores the importance of considering various factors, beyond just climate, when designing and operating solar collectors for efficient water heating systems.
Abstract viewed = 175 times
References
Abdunnabi, M., Rohuma, I., Endya, E., & Belal, E. (2018). Review on solar water heating in Libya. Solar Energy and Sustainable Development Journal, 7(SI), 1-27. DOI: 10.51646/jsesd.v7iSI.72
Abdunnabi, M., Dadesh, K., Mrehel, O., & El-shamekh, N. (2016). Effect of full implementation of domestic solar water heaters on the electricity peak load in Libya. Solar Energy and Sustainable Development Journal, 5(2), 33–43. DOI: 10.51646/jsesd.v5i2.62
Abdunnabi, M., Al-Ahjal, M., & Rahoma, I. (2017). Optimum sizing of residential active solar water heating systems for Libyan families. Solar Energy and Sustainable Development Journal, 6(1), 18–26. DOI: 10.51646/jsesd.v6i1.58
Abdunnabi, M., Loveday, D., &. Wright, J. (2019). Development of a design tool for sizing and optimizing thrmosyphon solar water heater systems: a case study for Tripoli-Libya. Solar Energy and Sustainable Development Journal, 8(1), 1–11. DOI: 10.51646/jsesd.v8i1.17
Abdunnabi, M., & Musa, M. (2021). Towards strategic plan for wide spreading of solar water heaters in Libya. Solar Energy and Sustainable Development Journal, 2(1), 12-25. DOI: 10.51646/jsesd.v2i1.93
Abdulwahab, S., Fathi, Y., El-Khozondar, H., Khaleel, M., Ahmed, A., & Alsharif, A. (2023). Meeting solar energy demands: significance of transposition models for solar irradiance. International Journal of Electrical Engineering and Sustainability (IJEES), 1(3), 90–105.
Algareu, A., Abdunnabi, M., Mabruk, M., & Elmaghrabi, A. (2021). Legionella bacteria activity investigation in domestic water heating systems: Tripoli-Libya as a case study. Solar Energy and Sustainable Development Journal, 10(2), 11–20. DOI: 10.51646/jsesd.v10i2.114
Alkhazmi, A., Hamdan, M. (2023). An experimental and theoretical study of the performance of the thermal storage using phase change materials. International Journal of Electrical Engineering and Sustainability (IJEES), 1(3), 60–73.
Almabrouk, A., & Abulifa, S. (2023). The technology of renewable energy and its role in achieving sustainable development. International Journal of Electrical Engineering and Sustainability (IJEES), 1(2), 1–9.
Alsadi, S., & Yasser, N. (2016). Correction of the ASHRAE clear sky model parameters based on solar radiation measurements in the Arabic countries. International Journal of Renewable Energy Technology Research, 5(4), 1-16.
Alsadi, S., & Yasser, N. (2017). Estimation of Solar Irradiance on Solar Fields: An Analytical Approach and Experimental Results. IEEE Transactions on Sustainable Energy, 8(4), 1601-1608. DOI: 10.1109/TSTE.2017.2697913
Alsadi, S., Yasser, N., Amer, K. (2016). General polynomial for optimizing the tilt angle of flat solar energy harvesters based on ASHRAE clear-sky model in mid and high latitudes. Energy and Power, Scientific& Academic Publishing, 6(2).
Andeef, M., Bakouri, K., Ahmed, B., Gait, A., El-Batta, F., Foqha, T., & Qarqad, H. (2023). The role of renewable energies in achieving a more secure and stable future. International Journal of Electrical Engineering and Sustainability (IJEES), 1(2), 11–20.
Bakari, R., Minja, R., & Njau, K. (2014). Effect of glass thickness on performance of flat plate solar collectors for fruits drying. Journal of energy, ,p. 1-8
Bakouri, K., Foqha, T., Ahwidi, O., Abubaker, A., Nassar, Y., & El-Khozondar, H. (2023). Learning lessons from Murzuq-Libya meteorological station: Evaluation criteria and improvement recommendations. Solar Energy and Sustainable Development Journal, 12(2), 30-48. DOI: 10.51646/jsesd.v12i1.149
Chabane, F., & Sekseff, E. (2018). Experimental study of a solar air collector with doubles glazed. Iranian (Iranica) Journal of Energy & Environment, 9(3), 163-167.
Elnaggar, M. (2023). Useful energy, economic and reduction of greenhouse gas emissions assessment of solar water heater and solar air heater for heating purposes in Gaza, Palestine. Heliyon, 9, e16803.
Eteriki, M., El-Osta, W., Nassar, Y., & El-Khozondar, H. (20223). Effect of implementation of energy efficiency in residential sector in Libya. The 8th International Engineering Conference on Renewable Energy & Sustainability CRES 2023, Gaza-Palestine, 2023.
Giovannetti, F. (2014). High transmittance, low emissivity glass covers for flat plate collectors: Applications and performance. Solar energy, 30(4), 106-115.
https://solargis.com/maps-and-gis-data/download/libya
Kalidasan, B., & Srinivas, T. (2014). Study on effect of number of transparent covers and refractive index on performance of solar water heater. Journal of Renewable Energy, 1-11.
Makhzom, A., Aissa, K., Alshanokie, A., Yasser, N., El-Khozondar, H., Salem, M., Khaleel, M., Bazina, M., & Elmnifi, M. (2023). Carbon dioxide life cycle assessment of the energy industry sector in Libya: A case study. International Journal of Electrical Engineering and Sustainability (IJEES), 1(3), 145–163.
Makhzom, A., Eshdok, A., Nassar, Y., Alsadi, S., Foqha, T., Salem, M., AlShareef, I., & El-Khozondar, H. (2023). Estimation of CO2 emission factor for power industry sector in Libya. The 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES 2023), May 8-9, 2023, Gaza Strip, Palestine. DOI: 10.1109/ieCRES57315.2023.10209528.
Nassar, Y. (2015). Thermodynamics analysis and optimization procedure for domestic solar water heating system. American Journal of Energy and Power Engineering, 2(6), 92-99.
Nassar, Y. (2006). Solar energy engineering active applications, Sabha University, Sebha - Libya.
Nassar, Y., Abuhamoud, N., Miskeen, G., El-Khozondar, H., Alsadi, S., & Ahwidi, O. (2022). Investigating the applicability of horizontal to tilted sky-diffuse solar irradiation transposition models for key Libyan cities. 2022 IEEE 2nd International Maghreb Meeting of the conference on Sciences and Techniques of Automatic control and computer engineering (MI-STA 2022), 23-25 May 2022 Sabratha-Libya.
Nassar, Y., Aissa, K., & Alsadi, S. (2018). Air pollution sources in Libya. Research & Reviews: Journal of Ecology and Environmental Sciences, 3(1), 63-79.
Nassar, Y., Aissa, K., & Alsadi, S. (2017). Estimation of environmental damage costs from co2e emissions in Libya and the revenue from carbon tax implementation. Low Carbon Economic, 8(3), 118-132.
Nassar, Y., El-Khozondar, H., Abouqeelah, M., Abubaker, A., Miskeen, A., Khaleel, M., Ahmed, A., Alsharif, A., Elmnifi, M. (2023). Simulating the energy, economic and environmental performance of concentrating solar power technologies using SAM, Libya as a case study. Solar Energy and Sustainable Development Journal, 12(2), 1-20. DOI: 10.51646/jsesd.v12i2.153.
Nassar, Y., El- Khozondar, H., Abohamoud, N., Abubaker, A., Ahmed, A., Alsharif, A., & Khaleel, M. (2023). Regression model for optimum solar collectors' tilt angles in Libya. The 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES 2023), May 8-9, 2023, Gaza Strip, Palestine. DOI: 10.1109/ieCRES57315.2023.10209547.
Nassar, Y., Hafez, A., & Alsadi, S. (2019). Multi-factorial comparison for twenty-four distinct transposition models for inclined surface solar irradiance computation, study case: State of Palestine. Frontiers in Energy Research. DOI: 10.3389/fenrg.2019.00163.
Nassar, Y., Salem, M., Iessa, K., AlShareef, I., Amer, K., & Fakher, M. (2021). Estimation of CO2 emission factor for the energy industry sector in Libya: A case study. Environment, Development and Sustainability, 23(1), 13998-14026. doi:10.1007/s10668-021-01248-9.
Nassar, Y., & Sergievsky, E. (2000). Heat transfer in flat-plate solar air-heating collectors. WIT Transactions on Engineering Sciences, 10(2), 1-10, DOI:10.2495/HT000531.
Saed, J., Abdunnabi, M., Essnid, A., & Buishi, A. (2017). New designed thermosyphon solar water heater with small sized parabolic trough collectors. Solar Energy and Sustainable Development Journal, 6(2), 30–41. DOI: 10.51646/jsesd.v2i1.93
Supriti, S. (2015). Study to find out the optimum number of transparent covers and refractive index for the best performance of sunearth solar water heater using matlab software, in Science in Technology. 2015, Arizona State University: USA.
Tawil, I., Abeid, M., Abraheem, E., Alghoul, S., & Dekam, E. (2018). Review on solar space heating - cooling in Libyan residential buildings. Solar Energy and Sustainable Development Journal, 7(SI), 78-112. DOI: 10.51646/jsesd.v7iSI.76
Tawil, I., BenAbeid, M., Belhaj, S., & Sowid, B. (2019). Simulation and evaluation of solar water heating systems availability in mosques sector in the city of Tripoli- Libya. Solar Energy and Sustainable Development Journal, 8(1), 1–17. DOI: 10.51646/jsesd.v8i1.19
Vettrivel, H., & Mathiazhagan, P. (2017). Comparison study of solar flat plate collector with single and double glazing systems. International Journal of Renewable Energy Research (IJRER), 7(1), 266-274.
Yasser, N., Alatrash, A., Elzer, R., Alkhazmi, A., El-Khozondar, H., Alsharif, A., Ahmed, A., & Khaleel, M. (2024). Optimum Number of Glass Covers of Thermal Flat Plate Solar Collectors. Wadi Alshatti University Journal of Pure and Applied Sciences, 2(1), 1-10.
Yasser, N., Alsadi, S., Amer, K., Yousef, A., & Fakher, M. (2019). Numerical analysis and optimization of area contribution of the PV cells in the PV/T flat-plate solar air heating collector. Solar Energy Research Update, 6(2), 43-50.
Yasser, N., Amer, K., El- Khozondar, H., Ahmed, Ab., Alsharif, A., & Khaleel, M. (2023). Thermoelectrical Analysis of a New Hybrid PV/T Flat-Plate Solar Collector. The 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES 2023), May 8-9, 2023, Gaza Strip, Palestine, pp. 1-5, doi: 10.1109/ieCRES57315.2023.10209472.
Yasser, N., El-Khozondar, H., Ghaboun, G., Khaleel, M., Yusupov, Z., Ahmed, A., & Alsharif, A. (2023). Solar and wind atlas for Libya. International Journal of Electrical Engineering and Sustainability (IJEES), 1(3), 27-43.
Yasser, N., Elzer, R., Alkhazmi, A., El-Khozondar, H., Essid, M., & Mbaye, A. (2023). Thermal analysis of air-heating flat-plate thermal solar collectors. International Journal of Electrical Engineering and Sustainability (IJEES), 1(3), 129–144, 2023.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Amer Khaled, Rahma Elzer, Ali Alkhazmi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.