Application of the Support Vector Machine (SVM) Algorithm for the Diagnosis of Diabetic Retinopathy
DOI:
10.47709/brilliance.v3i2.3436Keywords:
Diabetic Retinopathy, MATLAB, GLCM, SVM, Human ErrorDimension Badge Record
Abstract
Diabetic Retinopathy (DR) is a disease whose main cause is complications of diabetes mellitus. High levels of sugar in the blood (glucose) are caused by the pancreas' inability to produce insulin. Prevention of diabetic retinopathy and blindness by carrying out examinations at an early stage and doing them regularly. Currently, doctors still carry out examinations manually so they are prone to errors in examinations. This research aims to build an application to diagnose Diabetic Retinopathy in order to facilitate the work of the medical team and doctors at the eye clinic. In the application creation process, MATLAB is used, while feature extraction uses GLCM and for classification, SVM is used. The results of the research are that doctors and medical teams are helped in carrying out manual patient diagnoses and reduce the occurrence of human error.
Abstract viewed = 73 times
References
Fitriani, F., Sihotang, A. D., & Delfi. (2017). Prevalensi Retinopati Diabetik. Jurnal Kesehatan Prima, 11(2), 137–140. https://poltekkes-mataram.ac.id/wp-content/uploads/2018/01/7.-Fitriani.pdf
Hermawan, L.. (2017). Deteksi Dini Retinopati Diabetik dengan Pengolahan Citra Berbasis Morfologi Matematika. 11(2). https://jurnal.ugm.ac.id/ijccs/article/view/24761/16698
Hassan, Malaserene, D., & Leema. (2020). Diabetes Mellitus Prediction using Classification Techniques. International Journal of Innovative Technology and Exploring Engineering, 9(5), 2080–2084. https://doi.org/10.35940/ijitee.e2692.039520
Mateen, M., Wen, J., Hassan, M., Nasrullah, N., Sun, S., & Hayat, S. (2020). Automatic Detection of Diabetic Retinopathy: A Review on Datasets, Methods and Evaluation Metrics. IEEE Access, 8, 48784–48811. https://doi.org/10.1109/ACCESS.2020.2980055
Mustaqim. (2016). Metode Penelitian Gabungan Kuantitatif Kualitatif / Mixed Methods Suatu Pendekatan Alternatif. Jurnal Intelegensia, 04(1), 1–9. https://ejournal.unisnu.ac.id/JI/article/download/1351/1354
Praseptiyana, W. I., Widodo, A. W., & Rahman, M. A. (2019). Pemanfaatan Ciri Gray Level Co-occurrence Matrix ( GLCM ) Untuk Deteksi Melasma Pada Citra Wajah. 3(11), 10402–10409. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6685/3229
Putra, A. P. P., Nurhasanah, Y. I., & Zulkarnain, A. (2017). Deteksi Penyakit Diabetes Retinopati Pada Retina Mata Berdasarkan Pengolahan Citra. Jurnal Teknik Informatika Dan Sistem Informasi, 3(2), 376–390. https://doi.org/10.28932/jutisi.v3i2.640
Rahmah, M. (2018). Universitas Sumatera Utara. Identifikasi Penyakit Diabetic Retinopathy Melalui Citra Retina Menggunakan Deep Belief Network. https://repositori.usu.ac.id/bitstream/handle/123456789/6865/131402056.pdf?sequence=1&isAllowed=y
Rhys Williams (Chair) et.Al. (2019). IDF Diabetes Atlas 9th. In IDF Diabetes Atlas, 9th edition.
Saito, H. (2018). Sistem Deteksi Otomatis dan Pengukuran Papan Reklame Di Jalan Raya Berbasis Android. Jurnal Pembangunan Wilayah & Kota, 1(3), 82–91. https://123dok.com/document/zwk10rgz-sistem-deteksi-otomatis-pengukuran-papan-reklame-berbasis-android.html
Setiawan, W., & Damayanti, F. (2016). Klasifikasi Citra Retina Menggunakan K-Nearest. Seminar Nasional Sains Dan Teknologi, November, 1–6. https://jurnal.umj.ac.id/index.php/semnastek/article/view/779
Susetianigtias, D. T. dkk. (2017). Pengolahan citra fundus diabetik retinopati. Penerbit Gunadarma, 1(February), 104. http://rodiah.staff.gunadarma.ac.id/Publications/files/3994/Buku+Penelitian+Edisi+1.pdf
Tjolleng, A. (2017). Pengantar Pemrograman MATLAB. PT Elex Media Komputindo, 1–217.
Valverde, C., Garcia, M., Hornero, R., & Lopez-Galvez, M. (2016). Automated detection of diabetic retinopathy in retinal images. Indian Journal of Ophthalmology, 64(1), 26–32. https://doi.org/10.4103/0301-4738.178140
Wang, M. and Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing Journal. https://www.sciencedirect.com/science/article/abs/pii/S1568494619307276
Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2023 Yuliadi; Fadhli Dzil Ikram, M. Julkarnain, Fahri Hamdan, Halid Nuryadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.