ac

Application of the Support Vector Machine (SVM) Algorithm for the Diagnosis of Diabetic Retinopathy

Authors

  • Yuliadi Universitas Teknologi Informasi
  • Fadhli Dzil Ikram Universitas Teknologi Sumbawa
  • M. Julkarnain Universitas Teknologi Sumbawa
  • Fahri Hamdan Universitas Teknologi Sumbawa
  • Halid Nuryadi Universitas Teknologi Sumbawa

DOI:

10.47709/brilliance.v3i2.3436

Keywords:

Diabetic Retinopathy, MATLAB, GLCM, SVM, Human Error

Dimension Badge Record



Abstract

Diabetic Retinopathy (DR) is a disease whose main cause is complications of diabetes mellitus. High levels of sugar in the blood (glucose) are caused by the pancreas' inability to produce insulin. Prevention of diabetic retinopathy and blindness by carrying out examinations at an early stage and doing them regularly. Currently, doctors still carry out examinations manually so they are prone to errors in examinations. This research aims to build an application to diagnose Diabetic Retinopathy in order to facilitate the work of the medical team and doctors at the eye clinic. In the application creation process, MATLAB is used, while feature extraction uses GLCM and for classification, SVM is used. The results of the research are that doctors and medical teams are helped in carrying out manual patient diagnoses and reduce the occurrence of human error.

Google Scholar Cite Analysis
Abstract viewed = 73 times

References

Fitriani, F., Sihotang, A. D., & Delfi. (2017). Prevalensi Retinopati Diabetik. Jurnal Kesehatan Prima, 11(2), 137–140. https://poltekkes-mataram.ac.id/wp-content/uploads/2018/01/7.-Fitriani.pdf

Hermawan, L.. (2017). Deteksi Dini Retinopati Diabetik dengan Pengolahan Citra Berbasis Morfologi Matematika. 11(2). https://jurnal.ugm.ac.id/ijccs/article/view/24761/16698

Hassan, Malaserene, D., & Leema. (2020). Diabetes Mellitus Prediction using Classification Techniques. International Journal of Innovative Technology and Exploring Engineering, 9(5), 2080–2084. https://doi.org/10.35940/ijitee.e2692.039520

Mateen, M., Wen, J., Hassan, M., Nasrullah, N., Sun, S., & Hayat, S. (2020). Automatic Detection of Diabetic Retinopathy: A Review on Datasets, Methods and Evaluation Metrics. IEEE Access, 8, 48784–48811. https://doi.org/10.1109/ACCESS.2020.2980055

Mustaqim. (2016). Metode Penelitian Gabungan Kuantitatif Kualitatif / Mixed Methods Suatu Pendekatan Alternatif. Jurnal Intelegensia, 04(1), 1–9. https://ejournal.unisnu.ac.id/JI/article/download/1351/1354

Praseptiyana, W. I., Widodo, A. W., & Rahman, M. A. (2019). Pemanfaatan Ciri Gray Level Co-occurrence Matrix ( GLCM ) Untuk Deteksi Melasma Pada Citra Wajah. 3(11), 10402–10409. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6685/3229

Putra, A. P. P., Nurhasanah, Y. I., & Zulkarnain, A. (2017). Deteksi Penyakit Diabetes Retinopati Pada Retina Mata Berdasarkan Pengolahan Citra. Jurnal Teknik Informatika Dan Sistem Informasi, 3(2), 376–390. https://doi.org/10.28932/jutisi.v3i2.640

Rahmah, M. (2018). Universitas Sumatera Utara. Identifikasi Penyakit Diabetic Retinopathy Melalui Citra Retina Menggunakan Deep Belief Network. https://repositori.usu.ac.id/bitstream/handle/123456789/6865/131402056.pdf?sequence=1&isAllowed=y

Rhys Williams (Chair) et.Al. (2019). IDF Diabetes Atlas 9th. In IDF Diabetes Atlas, 9th edition.

Saito, H. (2018). Sistem Deteksi Otomatis dan Pengukuran Papan Reklame Di Jalan Raya Berbasis Android. Jurnal Pembangunan Wilayah & Kota, 1(3), 82–91. https://123dok.com/document/zwk10rgz-sistem-deteksi-otomatis-pengukuran-papan-reklame-berbasis-android.html

Setiawan, W., & Damayanti, F. (2016). Klasifikasi Citra Retina Menggunakan K-Nearest. Seminar Nasional Sains Dan Teknologi, November, 1–6. https://jurnal.umj.ac.id/index.php/semnastek/article/view/779

Susetianigtias, D. T. dkk. (2017). Pengolahan citra fundus diabetik retinopati. Penerbit Gunadarma, 1(February), 104. http://rodiah.staff.gunadarma.ac.id/Publications/files/3994/Buku+Penelitian+Edisi+1.pdf

Tjolleng, A. (2017). Pengantar Pemrograman MATLAB. PT Elex Media Komputindo, 1–217.

Valverde, C., Garcia, M., Hornero, R., & Lopez-Galvez, M. (2016). Automated detection of diabetic retinopathy in retinal images. Indian Journal of Ophthalmology, 64(1), 26–32. https://doi.org/10.4103/0301-4738.178140

Wang, M. and Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing Journal. https://www.sciencedirect.com/science/article/abs/pii/S1568494619307276

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-01-12
Accepted Date: 2024-01-13
Published Date: 2024-01-18

How to Cite

Yuliadi, Dzil Ikram, F., Julkarnain, M., Hamdan, F. ., & Nuryadi, H. (2024). Application of the Support Vector Machine (SVM) Algorithm for the Diagnosis of Diabetic Retinopathy. Brilliance: Research of Artificial Intelligence, 3(2), 416-422. https://doi.org/10.47709/brilliance.v3i2.3436

Most read articles by the same author(s)