Development of an Intelligent System to Determine Land Suitability for Horticultural Crops on Vegetable Commodities
DOI:
10.47709/brilliance.v3i2.3100Keywords:
Artificial intelligence, Horticultural Crop, Land Suitability, AHP, MFEPDimension Badge Record
Abstract
Global climate change has a significant impact on the agricultural sector, including horticulture, with climate fluctuations such as increased temperatures and changes in rainfall patterns potentially affecting crop productivity. Sustainable horticultural agriculture is important for safeguarding natural resources and reducing environmental impacts. However, challenges from climate change and variations in land conditions can affect horticultural crop production. Identifying crops that are suitable for the climate and land conditions is key to agricultural sustainability. An intelligent and adaptive approach is needed in selecting the right crops to grow in the face of climate change. This research develops an artificial intelligence application for the recommendation of horticultural crop types according to land conditions and climate change. The model built involves AHP and MFEP methods. The model takes into account various land parameters with weights determined through the AHP approach, allowing this AI application to provide accurate recommendations based on data and modeling. Based on the tests conducted, the system was able to produce analysis with an accuracy rate of 85%.
Abstract viewed = 114 times
References
Kumar, A., & Sharma, P. (2022). Impact of Climate Variation on Agricultural Productivity and Food Security in Rural India. SSRN Electronic Journal.
Nand, K., Tiwari, P.C., Pant, D., & Kumar, R. (2022). Changing Climatic Conditions and Shrinking Agricultural Land: A Community Based Study in Betalghat Development Block, Kumaun Lesser Himalaya. Disaster Advances.
Mukherjee, D. (2021). Food Security Under The Era Of Climate Change Threat. Journal of Advanced Agriculture & Horticulture Research.
Tufaila, M. & Alam, Syamsu. (2014). Karakteristik Tanah dan Evaluasi Lahan untuk Pengembangan Tanaman Padi Sawah di Kecamatan Oheo Kabupaten Konawe Utara. 24. 184-194.
Baly Woda, Y. W., Hermadi, I., & Marimin, M. (2019). Sistem Pendukung Keputusan Cerdas Kesesuaian Lahan Dengan Jenis Tanaman Pangan: Studi Kasus Kabupaten Sikka. Jurnal Teknologi Industri Pertanian, 29(1), 62–71. https://doi.org/10.24961/j.tek.ind.pert.2019.29.1.62
Holilullah, Afandi, & Novpriansyah, H. (2015). KARAKTERISITK SIFAT FISIK TANAH PADA LAHAN PRODUKSI RENDAH DAN TINGGI DI PT GREAT GIANT PINEAPPLE Holilullah, Afandi & Hery Novpriansyah. Jurnal Agrotek Tropika, 3(2), 278–282.
Rahayu, N. P., Putri, R. R. M., & Widodo, A. W. (2018). Sistem Pendukung Keputusan (SPK) Pemilihan Tanaman Pangan Berdasarkan Kondisi Tanah Menggunakan Metode ELECTRE dan TOPSIS. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (JPTIIK), 2(8), 2323–2332. https://j-ptiik.ub.ac.id
Sahputra, I., & Ula, M. (2022). GROUP DECISION SUPPORT SYSTEM FOR DETERMINING THE ELIGIBILITY OF PROVIDING HOUSING ASSISTANCE TO POOR FAMILIES. Jurnal Teknik Informatika (Jutif), 3(6), 1811–1816. https://doi.org/10.20884/1.jutif.2022.3.6.708
Ula, M., Phonna, R. P., Saputra, I., FNU, S., & Pratama, A. (2022). Penerapan Model Decision Support System Dalam Penentuan Pemilihan Minat Siswa. JURNAL TIKA, 7(1), 55–62. https://doi.org/10.51179/tika.v7i1.1103
Widiatmaka, W., Mediranto, A., & Widjaja, H. (2015). Characteristics, Soil Classification, and Teak Plantations Growth (Tectona grandis Linn f.) “Unggul Nusantara” Varieties in Ciampea, Bogor Regency. Journal of Natural Resources and Environmental Management, 5(1), 87–97. https://doi.org/10.19081/jpsl.2015.5.1.87
Euriga, E., Amanah, S., Fatchiya, A., & Asngari, P.S. (2018). The Motivation Factors and Farmer Group Clusters on Sustainable Horticulture Practices Adoption in Yogyakarta Province. International Journal of Sciences: Basic and Applied Research, 38, 160-171.
Savira, R.P., Firdaus, J.E., Rochmanila, K., Saputra, R., Zukhri, Z., & Cahyono, A.B. (2020). eduFarm: Aplikasi Petani Milenial untuk Meningkatkan Produktivitas di Bidang Pertanian.
Sinlae, Welmy, et al. "Penentuan Kesesuaian Lahan Pertanian Tanaman Cabai Menggunakan Metode Naïve Bayes di Kabupaten Kupang." Jurnal Komputer dan Informatika, vol. 9, no. 1, 17 Mar. 2021, pp. 56-64, doi:10.35508/jicon.v9i1.3848.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2023 ilham sahputra; Usna, rizky, Difa, dinda
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.