ac

Optimization of the Shortest Tsunami Evacuation Route Using Djikstra’s Algorithm in Benoa Village

Authors

  • Ida Bagus Kade Puja Arimbawa K Fakultas Teknologi dan Ilmu Kesehatan, Program Studi Sistem Informasi, Universitas Bali Dwipa, Indonesia
  • Wayan Sukartiasih Fakultas Humaniora dan Ilmu Sosial, Program Studi Psikologi, Universitas Bali Dwipa, Indonesia
  • Agung Sedayu Fakultas Teknologi dan Ilmu Kesehatan, Program Studi Sistem Informasi, Universitas Bali Dwipa, Indonesia

DOI:

10.47709/brilliance.v3i2.3089

Keywords:

Djikstra Algorithm, Shortest Path, Tsunami Evacuation

Dimension Badge Record



Abstract

Benoa Village has an area of approximately 2.38 km² and a population of 9,569 people in 2020 with a population density of 4,013 people/km2. This area is included in the list of tsunami-prone areas because the area is located on the edge of the Indian Ocean, which is known as an area with a high level of earthquake and volcanic activity. The 2004 tsunami that hit the coast of the Indian Ocean increased the potential for similar disasters to occur in the area. Determination of the shortest evacuation route in Benoa Village using Djikstra Algorithm. The result obtained is a path from the evacuation starting point vertex to the comfort zone node. Thisvertex represents places and road intersections arranged in the form of a weighted graph (distance) with a total of 51 vertexs, and an Adjacency Matrix is formed which is processed using the C++ Program. The Safe Zone vertex (Grand Hyatt Bali Temporary Meet Point (V50), Hattrick Futsal (V51)) are headed from the evacuation starting point of Serangan Beach (4.49km to V50, 6.94km to V51), Noanui Beach (3.95km to V50, 6.39km to V51), Samuh Beach (2.75km to V50, 5, 19km to V51), Nusa Dua Beach A (3.54km to V50, 5.48km to V51), Nusa Dua Beach B (3.47km to V50, 4.79km to V51), Peninsula Island (4.69km to V50, 4.80km to V51), Megiat Beach (4.81km to V50, 4.15km to V51) and Geger Beach (5.86km to V50, 5.09km to V51).

Google Scholar Cite Analysis
Abstract viewed = 179 times

References

Afandi, N., & Mayasari, Z. M. (2021). An evacuation route in bengkulu city based on fuzzy dijkstra algorithm. Journal of Physics: Conference Series, 1863(1), 12007.

Akram, M., Habib, A., & Alcantud, J. C. R. (2021). An optimization study based on Dijkstra algorithm for a network with trapezoidal picture fuzzy numbers. Neural Computing and Applications, 33(4), 1329–1342.

Anggria, S., Syafwan, M., & Efendi, E. (2017). Pemodelan Optimasi Evakuasi Tsunami di Kota Padang. Contoh.

Badan Meteorologi, K. dan G. (BMKG) dan G. (2023). Pedoman Pelayanan Peringatan Dini Tsunami InaTEWS. Https://Www.Gitews.de/Tsunami-Kit/Id/E3/Perangkat/Pedoman%20Pelayanan%20Peringatan%20Dini%20Tsunami%20InaTEWS%20(2).Pdf.

Badan Pusat Statistik Kabupaten Badung. (2023). Kabupaten Badung Dalam Angka 2023. Https://Badungkab.Bps.Go.Id/Publication/2023/02/28/E43a29aa94f24066c1e95c35/Kabupaten-Badung-Dalam-Angka-2023.Html.

Darmi, Y., & Muntahanah, M. (2022). Implementation of Dijkstra’s Algorithm to Determine Evacuation Paths in Earthquake and Tsunami Simulations in Bengkulu City Based on Gis. Jurnal Media Computer Science, 1(2), 117–130.

Deng, Y., Chen, Y., Zhang, Y., & Mahadevan, S. (2012). Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Applied Soft Computing, 12(3), 1231–1237.

Dijkstra, E. W. (2022). A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy (pp. 287–290).

Iryanto, I., & Ismantohadi, E. (2017). Optimasi Pemilihan Barang Dagangan bagi Pedagang Keliling dengan Algoritma Genetika. JTT (Jurnal Teknologi Terapan), 3(1).

Khaleel, T. A., & Al-Shumam, A. A. (2020). A study of graph theory applications in it security. Iraqi Journal of Science, 2705–2714.

Liu, L., Zhang, H., Shi, J., & Geng, J. (2023). Real-time evacuation route optimization in the fire scenarios of cruise ships. Simulation Modelling Practice and Theory, 102843.

Luo, M., Hou, X., & Yang, J. (2020). Surface optimal path planning using an extended Dijkstra algorithm. Ieee Access, 8, 147827–147838.

Pramudya, R. A., & Subiyanto, S. (2015). Penggunaan algoritma dijkstra dalam perencanaan rute evakuasi bencana longsor di kota semarang. Geoplanning: Journal of Geomatics and Planning, 2(2), 93–102.

Putra, I. E., & Rohendi, K. (2017). Implementation of geographic information system with Dijkstra Algorithm Base on mobile application: A model for disaster risk evacuation route in Padang City Indonesia. Proceedings of the 1st International Conference on E-Commerce, E-Business and E-Government, 30–34.

Sani, A. F., Tastrawati, N. K. T., & Dwipayana, I. M. E. (2013). Algoritma Floyd Warshall Untuk Menentukan Jalur Terpendek Evakuasi Tsunami di Kelurahan Sanur. E-Jurnal Matematika, 2(1), 1–5.

Sporns, O. (2022). Graph theory methods: applications in brain networks. Dialogues in Clinical Neuroscience.

Zhu, Y., Li, H., Wang, Z., Li, Q., Dou, Z., Xie, W., Zhang, Z., Wang, R., & Nie, W. (2022). Optimal Evacuation Route Planning of Urban Personnel at Different Risk Levels of Flood Disasters Based on the Improved 3D Dijkstra’s Algorithm. Sustainability, 14(16), 10250.

Downloads

ARTICLE Published HISTORY

Submitted Date: 2023-11-02
Accepted Date: 2023-11-02
Published Date: 2023-11-10

How to Cite

K, I. B. K. P. A., Sukartiasih, W. ., & Sedayu, A. . (2023). Optimization of the Shortest Tsunami Evacuation Route Using Djikstra’s Algorithm in Benoa Village. Brilliance: Research of Artificial Intelligence, 3(2), 217-224. https://doi.org/10.47709/brilliance.v3i2.3089