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ABSTRACT 

The proliferation of e-learning platforms has created a need for sophisticated 

course recommendation systems. This paper presents an innovative online 

course recommendation system using Neural Collaborative Filtering (NCF), a 

deep learning technique designed to surpass traditional methods in accuracy 

and personalization. Our system employs a hybrid NCF architecture, integrating 

matrix factorization with multi-layer perceptron to capture complex user-course 

interactions. The proposed NCF-based recommendation system aims to address 

key challenges in the e-learning domain, such as diverse user preferences, 

varying course content, and evolving learning patterns. By leveraging the 

power of neural networks, our approach seeks to provide more relevant and 

personalized course suggestions to learners. Our research contributes to the 

intersection of deep learning and educational technology, offering new insights 

into how advanced machine learning techniques can be applied to improve 

online learning experiences. The proposed system has the potential to enhance 

the quality of course recommendations, leading to more effective learning 

pathways for users. This work has important implications for e-learning 

platforms, educational institutions, and lifelong learners navigating the vast 

landscape of online courses. By improving the match between learners and 

courses, we aim to increase engagement, completion rates, and overall 

satisfaction in online education. Future work will explore the long-term impact 

of such personalized recommendations on learning outcomes and skill 

development. 
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INTRODUCTION 

The rapid growth of online education platforms has led to an unprecedented abundance of learning resources 

available to students worldwide (Ricci et al., 2015). However, this wealth of options often presents a challenge: how 

can learners efficiently navigate through thousands of courses to find those that best match their interests, goals, and 

learning styles? This problem has given rise to the need for sophisticated course recommendation systems that can 

effectively guide students towards relevant educational content (Jannach et al., 2010). Online course recommendation 

systems aim to analyze user behavior, preferences, and course characteristics to suggest personalized learning paths for 

individual students (Bobadilla et al., 2013). These systems not only enhance the learning experience by providing 

tailored suggestions but also contribute to increased engagement and completion rates on educational platforms (Ricci 

et al., 2015). 

Traditional recommendation approaches, such as content-based filtering and collaborative filtering, have shown 

promise in various domains, including e-commerce and entertainment (Linden et al., 2003; Koren et al., 2009). 

However, the unique complexities of educational contexts—such as the long-term nature of learning goals, the 

interdependence of course topics, and the diversity of learning styles—call for more advanced techniques (Jannach et 

al., 2010; Bobadilla et al., 2013). 

In recent years, deep learning approaches have demonstrated remarkable success in capturing intricate patterns 

and relationships within data (LeCun et al., 2015). Neural Collaborative Filtering (NCF), in particular, has emerged as a 

powerful framework for recommendation tasks, offering the ability to model complex user-item interactions more 

effectively than traditional matrix factorization techniques (He et al., 2017; Yang et al., 2020). Studies have shown that 

NCF consistently outperforms traditional methods, with improvements in recommendation accuracy of up to 7.7% in 

terms of Hit Ratio and 11.0% in terms of Normalized Discounted Cumulative Gain on certain datasets (He et al., 2017; 

Rendle et al., 2009). Furthermore, variants of NCF have demonstrated even higher performance gains, with some 

models achieving up to 12.9% improvement in Mean Average Precision compared to traditional collaborative filtering 

approaches (Rendle et al., 2009). 

This paper presents an online course recommendation system that leverages Neural Collaborative Filtering to 

address the challenges specific to educational environments. Our approach combines the strengths of collaborative 

filtering with the representational power of neural networks to capture nuanced relationships between learners and 

courses (He et al., 2017). By incorporating both explicit feedback (such as ratings and reviews) and implicit feedback 
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(such as course enrollment and completion patterns), our system aims to provide more accurate and context-aware 

recommendations (Wang et al., 2019). 

LITERATURE REVIEW 

Deep Learning 

Deep learning has emerged as a transformative force in artificial intelligence, driven by advances in 

computational power and data availability (LeCun et al., 2015). Key architectures like Convolutional Neural Networks 

(CNNs) have revolutionized computer vision (Krizhevsky et al., 2012), while Recurrent Neural Networks (RNNs) and 

their variants, such as Long Short-Term Memory (LSTM) networks, have advanced sequential data processing 

(Hochreiter & Schmidhuber, 1997). The introduction of the Transformer architecture has led to significant progress in 

natural language processing, forming the basis for powerful language models (Vaswani et al., 2017). 

Recent developments in deep learning include Generative Adversarial Networks (GANs), which have opened 

new avenues in generative modeling and unsupervised learning (Goodfellow et al., 2014). Despite its successes, deep 

learning continues to face challenges in areas such as interpretability, robustness against adversarial attacks, and ethical 

considerations. Ongoing research aims to address these issues while further advancing the field's capabilities in transfer 

learning, self-supervised learning, and application to diverse domains. 

 

Recommendation System 

Recommendation systems have become integral to many online platforms, helping users navigate vast amounts 

of information and products. Recent developments in recommendation systems have focused on incorporating deep 

learning techniques to capture complex user-item interactions and context information. Neural network-based 

approaches, such as neural collaborative filtering and deep factorization machines, have shown promising results in 

various domains (He et al., 2017). Despite their success, recommendation systems continue to face challenges in areas 

such as cold-start problems, scalability, and privacy concerns. Ongoing research aims to address these issues while 

improving recommendation accuracy and user satisfaction. 

 

Neural Collaborative Filtering 

Neural Collaborative Filtering (NCF) has emerged as a powerful approach in recommendation systems, 

combining the strengths of neural networks with collaborative filtering techniques. Traditional collaborative filtering 

methods, such as matrix factorization, have been widely used but often struggle to capture complex user-item 

interactions. NCF addresses this limitation by leveraging deep neural networks to learn non-linear relationships from 

user-item interaction data (He et al., 2017). The key innovation of NCF lies in its ability to replace the inner product 

used in traditional matrix factorization with a neural architecture, allowing for more expressive models of user-item 

interactions. 

The fundamental work on NCF by He et al. (2017) introduced a general framework that unifies matrix 

factorization and multilayer perceptron models. This approach has since inspired various extensions and improvements. 

For instance, Wang et al. (2019) proposed the Neural Graph Collaborative Filtering (NGCF) model, which explicitly 

encodes the collaborative signal in the form of high-order connectivity in user-item bipartite graphs. More recent 

advancements have focused on incorporating additional contextual information and improving model efficiency. 

Despite its success, NCF still faces challenges in areas such as model interpretability and the cold-start problem. 

Ongoing research aims to address these issues while further improving recommendation accuracy and generalization 

ability. 

 

RESEARCH METHODOLOGY 

Research Design 

This research proposes a system design that can recommend data using Neural Collaborative Filtering (NCF). 

There are several stages in achieving the final result, which form a common architecture used in almost all types of 

algorithms. Below is the implementation: 

 
Figure 1. Research Design 

 

https://doi.org/10.47709/brilliance.v4i2.4699


 

 

 

E-ISSN : 2807-9035 

Volume 4, Number 2, November 2024 

https://doi.org/10.47709/brilliance.v4i2.4699 

  

 

 
This is an Creative Commons License This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 International License. 519 

 

In the illustration above, input data such as user features, item features, and interactions are passed through an 

embedding layer to obtain latent representations. These latent representations are then processed by deep learning 

architectures such as NCF, DMF, autoencoder, RNN, or Transformer to learn complex patterns. Finally, the output 

layer produces a prediction of ratings or a ranking of recommended items 

 

Dataset 

The data used consists of 8,093 online course listings available online, obtained from several online learning 

platforms. Additionally, there are about 1,000 personalized user data entries, each with specified interests. The data will 

be combined and is expected to serve as the foundational material for the model training to be conducted this time 

 

Neural Collaborative Filtering 

Neural Collaborative Filtering (NCF) first emerged around 2017, building on traditional neural network-based 

recommendation techniques. NCF captures user-item interactions through a multi-layer representation, typically 

expressed as 𝑦
^

𝑢𝑖. The data used in this context is implicit feedback derived from interactions between news articles and 

readers, resulting in a user-item interaction matrix with values as expressed in the following equation, 

 

𝑦
^

𝑢,𝑖 = 𝑓(𝒖, 𝒗) 

 

The output value can be represented as follows: Let 𝒖 be the user representation vector, 𝒗 be the item 

representation vector, and 𝒇(𝒖, 𝒗) be a function that describes the interaction between the user and the item. In many 

implementations, the function 𝒇(𝒖, 𝒗) is implemented as a neural network that produces a score or probability, 

indicating how likely it is that the user will like a particular item. 

 

Matrix Factorization Algorithm 

NCF is a neural matrix factorization model that combines Generalized Matrix Factorization (GMF) and Multi-Layer 

Perceptron (MLP) to capture both linear and non-linear relationships between users and items. GMF effectively models linear 

interactions, while MLP learns complex patterns. The following figure illustrates how this hybrid approach enables NCF to 

deliver accurate and personalized recommendations: 

 
Figure 2. Neural Collaborative Filtering Framework 

This figure illustrates the use of latent vectors for items and users, followed by the fusion of outputs from the 

GMF layer (left) and the MLP layer (right). In the following sections, we will introduce this framework and explain 

how to learn the model parameters. 

 

The Generalized Matrix Factorization Model 

GMF extends standard MF by introducing a neural CF layer as the output layer. This generalization allows 

for greater flexibility in modeling user-item interactions. For instance, by learning the edge weights without 

constraints, GMF can assign varying importance to latent dimensions. Additionally, employing a non-linear 

activation function allows the model to capture more complex relationships compared to linear matrix 

factorization (MF). The formula depicted as follows: 

𝑟
^

𝑢𝑖 = 𝑎𝑜𝑢𝑡(ℎ𝑇(𝑞𝑖 ⊙ 𝑝𝑢)) 
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The formula above predicts user-item interactions by combining latent representations of users (𝑝𝑢) and 

items (𝑞𝑖). It first multiplies these representations element-wise, then calculates a weighted sum using a hidden 

representation (ℎ𝑇), and finally applies an activation function (𝑎𝑜𝑢𝑡) to obtain the predicted rating. This approach 

allows GMF to learn complex patterns and relationships between users and items, providing more accurate and 

personalized recommendations. 

 

The Multi-Layer Perception Model 

CF employs two pathways to model user-item interactions: 1) element-wise multiplication of latent vectors and 

2) concatenation of latent vectors. To learn complex interactions between concatenated user and item features, a 

standard MLP model is applied. This approach provides the model with a high degree of flexibility and non-linearity, 

enabling it to effectively capture intricate relationships between users and items: 

𝑧1 = 𝜙1(𝑝𝑢 , 𝑞𝑖) = [
𝑝𝑢

𝑞𝑖
] 

And the details of the hidden layers and output layer for the MLP are as follows: 

 

𝜙𝑙(𝑧𝑙) = 𝑎𝑜𝑢𝑡(𝑊𝑙
𝑇𝑧𝑙 + 𝑏𝑙), (𝑙 = 2,3, … , 𝐿 − 1) 

and: 

𝑟
^

𝑢,𝑖 = 𝜎(ℎ𝑇𝜙(𝑧𝐿−1)) 

Above, 𝑊l , 𝑏l, and 𝑎out  represent the weight matrix, bias vector, and activation function for the perceptron in 

the 𝑙-th layer, respectively. For the activation functions in the MLP layers, commonly used options include sigmoid, 

hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU), among others. Given that this is a binary classification 

task, the activation function for the output layer is set to the sigmoid function, 𝜎(𝑥) = 1 + 𝑒 − 𝑥1 ensuring the 

predicted score is constrained within the range (0,1) 

 

Fusion of Generalized Matrix Factorization and Multi Layer Perception 

To enhance flexibility, we allow GMF and MLP to learn separate embeddings and combine their outputs by 

concatenating their final hidden layers. Then we get  𝜙𝐺𝑀𝐹 from GMF: 

 

𝜙𝑢,𝑖
𝐺𝑀𝐹 = 𝑝𝑢

𝐺𝑀𝐹 ⊙ 𝑞𝑖
𝐺𝑀𝐹 

and obtain 𝜙𝑀𝐿𝑃 from MLP: 

 

𝜙𝑢,𝑖
𝑀𝐿𝑃 = 𝑎𝑜𝑢𝑡(𝑊𝐿

𝑇(𝑎𝑜𝑢𝑡(… 𝑎𝑜𝑢𝑡(𝑊2
𝑇[

𝑝𝑢
𝑀𝐿𝑃

𝑞𝑖
𝑀𝐿𝑃] + 𝑏2) … )) + 𝑏𝐿  

Then, the results of the GMF and MLP models are combined to generate the final prediction: 

 

𝑟
^

𝑢,𝑖 = 𝜎(ℎ𝑇[
𝜙𝐺𝑀𝐹

𝜙𝑀𝐿𝑃 ]) 

This model effectively leverages the complementary strengths of Matrix Factorization (MF) and Deep Neural 

Networks (DNNs) to model user-item latent structures. 

 

Binary Cross-Entropy 

Binary Cross-Entropy (BCE) is a widely used loss function in binary classification tasks, including in our model 

where we predict whether a user will be interested in a course or not. The BCE formula is: 

 

𝐵𝐶𝐸(𝑦, 𝑦 ) = −[𝑦𝑙𝑜𝑔(𝑦 ) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦 )] 
 

Where 𝑦 is the actual label (0 or 1), and 𝑦
^

 is the predicted probability. This function penalizes the model based 

on how far the predicted probability deviates from the true label. We use BCE because it handles probabilistic outputs 

effectively, offering smooth gradient updates, accurate probability estimates, and the ability to balance class imbalances 

when necessary. In this context, it helps ensure the model minimizes errors in predicting user preferences, improving 

recommendation accuracy. 
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DISCUSSION 

The testing scenario discusses the test data and the testing scenario for accuracy using Neural Collaborative 

Filtering (NCF) on the course online dataset of 8,093 entries and 1,000 personalized user data entries with their interests 

linked with course dataset based on their categories. We evaluated the impact of different learning rates and batch sizes 

on the model's loss and number of positive predictions. The objective was to identify the optimal configuration that 

balances performance (as measured by loss) and the model’s ability to classify positive cases. We explored two learning 

rates, 0.001 and 0.0001, across three batch sizes: 128, 256, and 512. Below, we discuss the findings based on these 

hyperparameters and their effects on model behavior. 

 
Figure 3. Performance of learning rate 0.001 

 
Table 1. List of learning iteration based on different learning rate and batch sizes 

Iteration Learning Rate Batch Size Loss 
Positive 

Prediction 

1 0.001 128 0.7258 88323 

2 0.001 256 0.7223 72466 

3 0.001 512 0.7263 78932 

4 0.0001 128 0.7273 82494 

5 0.0001 256 0.7239 78808 

6 0.0001 512 0.7334 80528 

 

Performance Overview 

The bar chart illustrates the performance of a Neural Collaborative Filtering model at a learning rate of 0.001 

across three iterations. It compares loss values (in blue) and positive predictions (in orange) for each iteration. The chart 

shows that the loss decreases from 0.7258 to 0.7223 in the first two iterations, indicating effective learning, but slightly 

increases to 0.7263 in the third iteration, suggesting potential instability. Meanwhile, positive predictions fluctuate, 

starting at 88,323, dropping to 72,466, and then rising to 78,932. This visualization highlights the relationship between 

model performance metrics and underscores the importance of monitoring both loss and predictions during training. 

The bar chart presents the performance of a Neural Collaborative Filtering model at a learning rate of 0.0001 

across three iterations. It displays the loss values (in blue) and positive predictions (in orange) for each iteration. The 

loss initially decreases from 0.7273 in the fourth iteration to 0.7239 in the fifth iteration, indicating some improvement. 

However, it then increases to 0.7334 in the sixth iteration, suggesting instability in learning. The positive predictions 

fluctuate, starting at 82,494, decreasing to 78,808, and then rising to 80,528. This visualization emphasizes the need to 

monitor both loss and prediction metrics closely, as they provide valuable insights into the model's performance during 

training. 
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Figure 4. Performance of learning rate 0.0001 

Analysis of Batch Size Impact 

While the primary focus of the study was on learning rates, the impact of batch size on model performance was 

also examined. However, the results did not reveal a clear correlation between batch size and loss values within the 

iterations observed. It is essential to note that the variations in loss were predominantly influenced by the learning rates 

rather than the batch sizes used in this experiment. 

The lack of significant impact from batch size suggests that other factors, such as the complexity of the model 

and the characteristics of the dataset, may play a more pivotal role in determining how effectively the model learns from 

the data. This finding prompts further investigation into the interplay between batch size and learning rate, as well as 

how they collectively influence the training dynamics. 

 

RESULT 

Overall best result 

The second iteration with a learning rate of 0.001 combined with a batch size of 256 achieved the best overall 

result for the Neural Collaborative Filtering model, recording a loss value of 0.7223. This represents a significant 

improvement over the first iteration, which had a higher loss of 0.7258, despite generating the highest positive 

predictions at 88,323. The lower loss in the second iteration, coupled with a reasonable number of positive predictions 

(72,466), indicates that the model was more effectively capturing underlying data patterns while also maintaining 

accuracy in its predictions. 

Table 2. Iteration of learning 

Epoch Accuracy Loss 

1 0.6663 0.9588 

2 0.7060 0.7455 

3 0.7150 0.7355 

4 0.7099 0.7377 

5 0.7108 0.7341 

6 0.7134 0.7287 

7 0. 7173 0. 7304 

 

The training results across the first seven epochs highlight a positive trend in model performance, showcasing 

steady improvements in both accuracy and loss. Beginning with Epoch 1, the model achieved an accuracy of 66.63% 

and a loss of 0.9588, setting a solid foundation for learning. By Epoch 2, the model made significant strides, reaching 

an accuracy of 70.60% and reducing the loss to 0.7455—a clear indication of effective learning. 

The momentum continued through subsequent epochs, with accuracy climbing to a peak of 71.73% by Epoch 7 

and loss decreasing to 0.7304. This consistent improvement reflects the model's ability to adapt and refine its 

predictions over time. Overall, these results demonstrate a successful training process, showcasing the model's capacity 

for growth and its potential for further enhancements in future iterations. 

The training progress over 7 epochs reveals interesting dynamics. Training accuracy improves steadily from 

66.63% to 71.73%, while training loss decreases from 0.9588 to 0.7304, indicating consistent learning. However, 

validation metrics show high volatility: validation accuracy fluctuates between 72.66% and 86.92%, and validation loss 

varies from 0.2620 to 0.3486. This instability in validation performance suggests potential overfitting or dataset 

peculiarities. 
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Figure 5. Performance overview 

The learning rate is adjusted during training, starting at 0.001 and decreasing to 0.00025 by the 7th epoch, likely 

to fine-tune model performance. Final training metrics show a loss of 0.7260 and accuracy of 71.59%. However, the 

model's predictive performance reveals challenges, with very small predicted values (around 0.00013) and a tendency to 

predict mostly negative cases (class 0). 

Performance metrics indicate a trade-off between precision (0.3093) and recall (0.7156), resulting in an F1-score 

of 0.4319. 

 

CONCLUSION 

The results from this experiment suggest that a learning rate of 0.001 combined with a batch size of 256 provides 

the best overall performance, minimizing loss while maintaining a reasonable number of positive predictions. For tasks 

where precision and low loss are prioritized, the batch size of 256 is the optimal choice. Conversely, for applications 

where recall is more important, the batch size of 128 can be considered, as it results in more positive predictions at the 

expense of slightly higher loss. A batch size of 512 represents a middle ground, balancing between minimizing loss and 

increasing positive predictions but does not outperform the smaller batch sizes. 

Further experimentation could explore learning rate scheduling and other batch size combinations to fine-tune 

the model further. Additionally, it would be beneficial to assess these configurations on a validation set to determine 

generalization capabilities beyond the training set. 
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