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ABSTRACT 

This study explores the development and evaluation of a neural network model 

for predicting diabetes based on clinical data. The model was built using the 

Keras API with TensorFlow backend. Key steps included data preprocessing, 

such as feature scaling with `StandardScaler` and splitting the data into training 

and testing sets. The neural network architecture consisted of an input layer, two 

hidden layers with ReLU activation functions, and an output layer with a 

sigmoid activation function, optimized using the Adam optimizer and binary 

crossentropy loss function.  

The model was trained over 50 epochs with a batch size of 10, incorporating a 

validation split of 20% to monitor performance on unseen data during training. 

The results demonstrated a high accuracy of approximately 97% on the test set, 

indicating the model's efficacy in predicting diabetes. Further analysis using a 

confusion matrix revealed a high count of true positives and true negatives, 

alongside minimal false positives and false negatives, confirming the model's 

robustness. These findings suggest that neural networks can be effectively 

employed for diabetes prediction, offering significant potential for integration 

into clinical decision support systems. However, further validation with larger 

and more diverse datasets, alongside considerations for data imbalance and 

model interpretability, is recommended to ensure generalizability and practical 

application in real-world healthcare settings. 

Article History: 

Submitted: 20-05-2024 

Accepted: 22-05-2024 

Published: 07-06-2024 

Keywords:  
Diabetes; Feedforward neural 

networks; prediction; 

classification; deep learning 

Brilliance: Research of 

Artificial Intelligence is licensed 

under a Creative Commons 

Attribution-NonCommercial 4.0 

International (CC BY-NC 4.0). 

 

INTRODUCTION 

Diabetes mellitus is a chronic metabolic disorder characterized (Hameed et al., 2015) by elevated levels of blood 

glucose, which can lead to severe long-term complications if not managed properly(Mukhtar et al., 2020). The 

prevalence of diabetes has been increasing globally, posing significant health, economic, and social challenges. 

According to the International Diabetes Federation, approximately 537 million adults (aged 20-79) were living with 

diabetes in 2021, a number expected to rise to 643 million by 2030 (Lynch, 2022)(Bergman et al., 2024). The rising 

incidence underscores the urgent need for effective strategies for early detection and management. 

Diabetes can be categorized into several types, with type 2 diabetes (Udler, 2019) being the most common, 

accounting for around 90% of all diabetes cases. Type 2 diabetes typically develops due to a combination of genetic 

predisposition and lifestyle factors, including poor diet, physical inactivity, and obesity (Sejdinović et al., 2017). Early 

detection and intervention are crucial for preventing or delaying the onset of complications associated with diabetes, 

such as cardiovascular disease, kidney failure, neuropathy, and retinopathy (Gavan et al., 2016)(Ting et al., 2016). 

Advancements in machine learning, particularly deep learning, have opened new avenues for predicting and 

diagnosing diabetes with high accuracy. Deep learning models, which are inspired by the structure and function of the 

human brain, can automatically learn and extract features from complex datasets. These models have shown great 

promise in various medical applications, including diabetes prediction.  

In this study, we utilize a deep learning approach to predict diabetes based on the aforementioned features. The 

dataset includes records from individuals with detailed information on gender, age, hypertension, heart disease, 

smoking history, BMI, HbA1c levels, and blood glucose levels  

The application of deep learning in diabetes prediction holds significant potential for enhancing early diagnosis 

and personalized treatment plans (Hasan et al., 2020)(Fan et al., 2021). By leveraging comprehensive datasets and 

advanced machine learning techniques, healthcare providers can achieve more accurate predictions and better patient 

outcomes. The integration of such models into clinical practice can revolutionize diabetes management, leading to 

improved quality of life for millions of individuals worldwide. 
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LITERATURE REVIEW 

Detection and Prediction of Diabetes 

Early detection of diabetes is crucial for managing the disease and preventing complications. Traditional methods 

for diabetes diagnosis include fasting blood glucose tests, oral glucose tolerance tests (OGTT), and glycated 

hemoglobin (HbA1c) tests. These methods, while effective, rely on clinical visits and may not be suitable for early, 

widespread screening. Thus, the development of predictive models has become a focal point in diabetes research, 

leveraging various statistical and machine learning techniques to identify individuals at risk. 

Several comparative studies have evaluated the performance of different machine learning and deep learning 

methods for diabetes prediction. These studies typically compare models based on metrics such as accuracy, precision, 

recall, F1-score, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC). For instance, a study by 

(Hussain & Naaz, 2021) compared logistic regression, decision trees, SVM, and ANN for diabetes prediction, finding 

that ANN outperformed other models in terms of accuracy and AUC-ROC. Another study by (Rodriguez-Galiano et al., 

2015) demonstrated that random forests and deep learning models achieved higher predictive accuracy compared to 

traditional statistical methods. 

 

Feedforward Neural Networks 

Feedforward neural networks (FNNs), also known as multilayer perceptrons (MLPs)(Thomas et al., 2016), are 

the foundational architecture of artificial neural networks. In FNNs, information moves in one direction—from input 

nodes through hidden nodes (if any) to output nodes—without forming cycles or loops. These networks are widely used 

for a variety of tasks, including classification, regression, and pattern recognition(Ojha et al., 2017). 

Implementation of Feedforward Neural Networks Using Keras with TensorFlow Backend Keras is a high-level 

neural network API that simplifies building and training neural networks. It can run on top of various backends, with 

TensorFlow being the most popular due to its robustness and flexibility. TensorFlow provides comprehensive support 

for deep learning operations and efficient execution (Abadi et al., 2016). 

 

Key Components and Parameters 

1. Input Layer         

This layer receives the input data. The number of neurons in this layer corresponds to the number of features in 

the dataset. 

2. Hidden Layers        

These layers perform most of the computations required for making predictions. Each neuron in a hidden layer 

applies a linear transformation followed by a non-linear activation function to the inputs. 

3. Output Layer   

This layer produces the final prediction. For binary classification, a single neuron with a sigmoid activation 

function is typically used, while for multi-class classification, a softmax activation function with as many 

neurons as there are classes is employed. 

4. Activation Functions      

Commonly used activation functions include: 

a. ReLU (Rectified Linear Unit) 

b.  

𝑅𝑒𝑙𝑢(𝑥) = max⁡(0, 𝑥)   (1) 

c. Sigmoid 

 

𝜎(𝑥) =
1

1+𝑒−𝑥
    (2) 

 

d. Softmax 

𝑥𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑗
    (3) 

 

5. Loss Functions 

The loss function measures the discrepancy between the predicted output and the actual output. Common loss 

functions include: 

a. Binary Crossentropy: Used for binary classification problems 

b. Categorical Crossentropy: Used for multi-class classification problems. 

c. Mean Squared Error (MSE): Used for regression problems. 

 

6. Optimizers 

Optimizers adjust the weights of the network to minimize the loss function. Popular optimizers include: 

https://doi.org/10.47709/brilliance.v4i1.3888
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Adam: Combines the advantages of AdaGrad and RMSProp.  

SGD (Stochastic Gradient Descent): A simple and widely used optimization algorithm. 

 

7. Metrics       

Metrics are used to evaluate the performance of the model. Common metrics include accuracy, precision, recall, 

and F1-score. 

 

METHOD 

The algorithm used in the program is a neural network algorithm feedforward neural network implemented using 

Keras with TensorFlow backend. This model is trained using the Adam optimizer and evaluated using binary 

crossentropy loss and accuracy metric. 

 

Preprocessing the Data 

The Diabetes prediction dataset is a collection of medical and demographic data from patients, along with their 

diabetes status (positive or negative). The data includes features such as age, gender, body mass index (BMI), 

hypertension, heart disease, smoking history, HbA1c level, and blood glucose level. This can be useful for healthcare 

professionals in identifying patients who may be at risk of developing diabetes and in developing personalized 

treatment plans. Additionally, the dataset can be used by researchers to explore the relationships between various 

medical and demographic factors and the likelihood of developing diabetes.  

 

Table 1. Data Example 

Gender Age Hyperten

sion 

Heart 

disease 

Smoking 

history 

BMI HbA1c 

level 

Blood glucose 

level 

Diabetes 

1 80 0 1 1 25.19 6.6 140 0 

1 54 0 0 0 27.32 6.6 80 0 

0 28 0 0 1 27.32 5.7 158 0 

1 36 0 0 2 23.45 5 155 0 

0 76 1 1 2 20.14 4.8 155 0 

1 20 0 0 1 27.32 6.6 85 0 

1 44 0 0 1 19.31 6.5 200 1 

1 79 0 0 0 23.86 5.7 85 0 

0 42 0 0 1 33.64 4.8 145 0 

1 32 0 0 1 27.32 5 100 0 

1 53 0 0 1 27.32 6.1 85 0 

1 54 0 0 3 54.7 6 100 0 

 

Gender 

Man  : 0 

Female  : 1 

 

Data preprocessing involves preparing the data for training. This includes splitting the data into features (X) and 

target (y), further splitting it into training and testing sets, and scaling the features.  Feature and Target Split: X contains 

all the feature columns, while y contains the target column 'diabetes'. The data is split into training (80%) and testing 

(20%) sets using train_test_split. Features are standardized using StandardScaler to have zero mean and unit variance, 

which helps improve the convergence of the neural network. 

 

Building the Neural Network 

Next, we build the neural network model using Keras. The model consists of multiple layers: input layer, hidden 

llayers, and output layer.  

 

1) Sequential Model: The Sequential model is a linear stack of layers. 

2) Input Layer: The first layer (Dense(32, input_dim=X_train.shape[1], activation='relu')) has 32 neurons and 

uses the ReLU activation function. input_dim=X_train.shape[1] specifies the number of input features. 

https://doi.org/10.47709/brilliance.v4i1.3888
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3) Hidden Layers: The second layer (Dense(16, activation='relu')) has 16 neurons and also uses the ReLU 

activation function. 

4) Output Layer: The output layer (Dense(1, activation='sigmoid')) has 1 neuron and uses the sigmoid activation 

function to output a probability score for binary classification. 

 

Compiling the Model 

After building the model, it is compiled with an optimizer, loss function, and evaluation metric. 

1) Optimizer: The adam optimizer is used for adjusting the weights during training. 

2) Loss Function: binary_crossentropy is used as it is suitable for binary classification problems. 

3) Metrics: The model's performance is evaluated using the accuracy metric. 

Training the Model 

The model is then trained on the training data.  

1) Epochs: The number of epochs (iterations over the entire dataset) is set to 50. 

2) Batch Size: The batch size (number of samples per gradient update) is set to 10. 

3) Validation Split: 20% of the training data is used for validation, allowing the model to be evaluated on 

unseen data during training. 

4) Evaluating the Model 

 

After training, the model is evaluated on the test data to assess its performance. The evaluate method returns the 

loss and accuracy on the test set, providing a measure of the model's performance on unseen data. 

 

Making Predictions and Confusion Matrix 

Predictions are made on the test data, and the results are evaluated using a confusion matrix. 

1. Predictions: The predict method is used to generate predictions, which are thresholded at 0.5 to produce binary 

outcomes. 

2. Confusion Matrix: The confusion matrix shows the counts of true positives, true negatives, false positives, and 

false negatives, providing insights into the classification performance. 

 

RESULT 

From the results of experiments that have been carried out on 10,000 data. Which is divided into 2 parts. 80% of 

the data for training and 20% of the data for testing obtained an accuracy rate of 97 %. Results are shown in figure 1. 

 

 
Figure 1. Results of the accuracy level of the FNNs model that has been built. 

 

The graph displays the accuracy trends of a neural network model over 50 epochs, highlighting both the training 

and validation accuracy. Initially, both the training and validation accuracies show a rapid increase, with significant 

improvements in the first 10 epochs. This quick ascent suggests that the model is effectively learning and adapting to 

the training data early in the training process.  

https://doi.org/10.47709/brilliance.v4i1.3888
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Post this initial phase, the training accuracy stabilizes around 97.2%, indicating that the model continues to learn 

but at a much slower rate. The validation accuracy, while also high, exhibits more variability, fluctuating around 97.0%. 

These fluctuations in validation accuracy, although relatively minor, suggest some inconsistency in model performance 

when applied to unseen data.  

Despite these fluctuations, the overall high accuracy and the close proximity of the training and validation curves 

suggest that the model is not overfitting significantly and generalizes well to new data. The steady performance across 

epochs indicates that 50 epochs are likely sufficient for training this model, though the minor variability in validation 

accuracy points to potential areas for further refinement, such as additional regularization or hyperparameter tuning, to 

enhance stability and performance consistency. 

 
Figure 2. Validation loss of a neural network model 

 

Figure 2 depicts the training and validation loss of a neural network model over 50 epochs. Initially, both the 

training and validation losses start relatively high, with the training loss at around 0.12. Within the first 10 epochs, there 

is a steep decline in both losses, indicating that the model quickly learns and fits the training data, improving its 

performance significantly in the early stages. 

After this rapid initial decrease, the training loss continues to decrease steadily, stabilizing around 0.08. This 

consistent downward trend signifies that the model is effectively learning from the training data and minimizing the 

error over time.  

In contrast, the validation loss shows more variability after the initial drop, fluctuating between 0.08 and 0.09. 

These fluctuations indicate that while the model is generally performing well on the validation set, there are periods of 

slight instability where the model's performance on unseen data varies. This could be due to several factors, such as 

small changes in the validation data or inherent variability in the model's predictions. 

Overall, the close alignment between the training and validation loss curves suggests that the model is not 

overfitting, as there is no significant divergence between the two. However, the minor fluctuations in validation loss 

suggest that further fine-tuning, such as adjusting regularization techniques or hyperparameters, might help in achieving 

a more stable validation performance. Despite these fluctuations, the general trend indicates that the model is robust and 

effective in minimizing loss on both training and validation datasets. 

https://doi.org/10.47709/brilliance.v4i1.3888
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Figure 3. Confusion Matrix 

 

The confusion matrix presented in the figure provides a detailed summary of the performance of a binary 

classification model in predicting diabetes status. Here’s a detailed analysis based on the values from the confusion 

matrix, his results in an accuracy of approximately 97%, which indicates that the model is highly effective at correctly 

predicting both diabetic and non-diabetic cases. This precision value of approximately 97.1% indicates that when the 

model predicts a positive diabetes status, it is correct 97.1% of the time. A recall value of approximately 69.1% suggests 

that the model is able to correctly identify 69.1% of the actual diabetic cases. This indicates some room for 

improvement, as about 30.9% of actual diabetic cases are not being correctly identified (false negatives). The F1-score 

of approximately 80.5% represents a balance between precision and recall, indicating that the model performs well but 

still has room for improvement in sensitivity. 

The model performs exceptionally well in most areas but could benefit from improved recall to reduce the 

number of missed diabetic cases. This could be achieved through techniques such as adjusting the decision threshold, 

using more complex models, or applying methods to address class imbalance. 

 

DISCUSSION 

The results of the experiment using Feedforward Neural Networks (FNNs) to predict diabetes status show 

promising accuracy but also indicate areas for improvement, particularly in recall. Here we discuss several strategies 

and considerations for enhancing the performance of the model. Hyperparameter tuning involves optimizing the 

parameters that govern the learning process of the neural network Adjusting the learning rate can significantly affect 

model convergence and performance. Techniques like learning rate schedules or adaptive learning rates (e.g., Adam 

optimizer) can be used. Experimenting with different network architectures, such as varying the number of hidden 

layers and neurons per layer, can help find the optimal configuration for the task. 

Tuning the batch size and number of epochs can impact the training dynamics. Smaller batch sizes can lead to 

more robust training, while more epochs can ensure the model fully converges. 

While the current Feedforward Neural Network achieves a high accuracy of 97%, there is room for improvement, 

particularly in recall (69.1%). By employing hyperparameter tuning, regularization techniques, data augmentation, 

advanced architectures, and robust evaluation methods, the model's performance can be enhanced further. Continuous 

iteration and experimentation with these strategies will likely yield a more balanced and accurate predictive model for 

diabetes status. 

 

CONCLUSION 

The model achieved a high accuracy of 97%, indicating that it correctly predicted diabetes status for 97% of the 

instances in the test set. This high level of accuracy suggests that the neural network was able to effectively learn the 

patterns and relationships in the dataset. The data preprocessing steps, including feature scaling and splitting the data 

into training and testing sets, contributed to the model's performance. Standardizing the features ensured that the neural 

network could train efficiently and converge more quickly. 

With an accuracy of 97%, this neural network model has significant potential for real-world applications in 

medical diagnostics. It can assist healthcare professionals in identifying patients at risk of diabetes with high 

https://doi.org/10.47709/brilliance.v4i1.3888
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confidence, facilitating early intervention and management. Despite the high accuracy, it is crucial to validate the model 

further with additional datasets and in different clinical settings to ensure its generalizability and robustness across 

diverse patient populations. 

Techniques like resampling, synthetic data generation (like SMOTE), or using alternate assessment metrics 

(including accuracy, recall, and F1-score) may be required if the dataset is imbalanced (i.e., there are disproportionately 

more instances of one class than the other). Further feature engineering, such as creating interaction terms or deriving 

new features based on domain knowledge, could potentially improve the model's predictive performance. 
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