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ABSTRACT 

The research conducted by many scientists and engineers on nanocomposite 

materials and continuous systems made from such materials will be reviewed 

historically in this article by the writers. Nano composites are a form of well-

known composite material that has been improved by adding nanoscale fibers 

and/or particles for reinforcement. These materials may be more appropriate for 

industrial applications that require material qualities that are noticeably 

improved. In other words, because of the improved properties of materials at the 

nanoscale, the material properties of nanocomposites are superior to those of 

macroscale composites. Designers are using these materials more frequently 

than traditional composite materials as constituent parts in aerospace, 

mechanical, and automotive applications. In order to forecast how buildings 

made of these materials will behave under actual operating conditions, it is 

crucial to be aware of the research that has been done in this field. The 

mechanical analyses carried out on various nanocomposite structures, such as 

those reinforced with carbon nanotubes (CNTR), graphene (GR), graphene 

platelets (GPLR), graphene oxide (GOR), and multi-scale hybrid (MSH) nano-

composite ones, will be reviewed in the sections that follow, along with the most 

significant aspects of the suggested scientific activities. 
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INTRODUCTION 

In several sectors today, nanocomposite materials are being used in place of more traditional composite materials 

to create devices that accomplish the intended function. When comparing the mechanical, thermal, electrical, and 

optical properties of materials at the nanoscale to those at the usual macroscale, the cause of this tendency may be 

understood. In fact, compared to equivalent materials at the macroscale, nanoscale materials have different 

characteristics. As a result, anytime nanosize reinforcements are chosen to be used instead of macroscale ones, the 

major goal from the design of composite materials, which is the amplification of an initial matrix with the superior 

properties of the reinforcing phase, can be better satisfied. In contrast to carbon fiber (CF), which has GPa-order 

stiffness, carbon nanotube (CNT) stiffness can range from the order of TPa to GPa, depending on its chirality. 

Therefore, it is only normal to observe that the scientific community has progressed toward using CNT rather than CF 

when building composite materials in order to enrich a greater rigidity. This tendency led many academics to focus their 

scientific investigations on understanding how nanocomposite structures respond mechanically to different kinds of 

external loadings.  

However, it must be made clear that analyzing nanosize structures like nanobeams, nanoplates, and nanoshells is 

a fundamentally separate topic from the examination of nanocomposite structures. To learn more about the 

aforementioned topic, volunteer readers are advised to examine related sources [1–6] that deal with the mechanical 

analysis of nanostructures. It is also important to note that a variety of nanoparticles and nanofillers can be used to 

enhance the material properties of nanocomposites. In order to enhance the material qualities of an original resin, 

carbon-based nanofillers are frequently used. Researchers have been heavily using graphene, graphene oxide (GO), and 

graphene platelet (GPL) to reinforce nanocomposite materials in recent years. Additionally, a suitable starting matrix 

will be strengthened by two-scale reinforcing components in a recently developed type of nanocomposites. In fact, a 

group of both macroscale and nanoscale fibers/fillers will be disseminated in a media to enhance material qualities even 

more than those obtained from previously created nanocomposites in such nanocomposites, which are referred to as 
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multi-scale hybrid (MSH) nanocomposites. It is typical to combine CF and a nanosize reinforcing phase in MSH 

nanocomposites. In order to achieve improved material properties either in the middle or at the upper and lower edges 

of the analyzed structure, it is also common practice to design the desired distribution for the nanosize reinforcement 

across the thickness of the nanocomposite media as opposed to the uniform-type distribution. The resultant 

nanocomposite is typically referred to as functionally graded (FG) nanocomposites in this type of nanocomposite 

material due to the dependence between thickness and the presence of nanofillers. The FG-O, FG-X, and FG-A type 

nanocomposites are the most well-known FG distributions. The designations stated above come from a cross-sectional 

view of the nanofillers injected across the thickness of the primary matrix. For instance, in the FG-O nanocomposite 

structures, the middle surface of the structure has the highest volume fraction of nanoparticles, while the top and bottom 

surfaces have the lowest volume fraction.  

From this point forward, it appears that nanofillers are distributed across thickness in a pattern similar to the 

English "O" letter. The various designations given to other classes of FG nanocomposites can be understood by 

following a similar process. The numerical and analytical analyses of the constitutive behavior and mechanical 

responses of CNT reinforced (CNTR), graphene reinforced (GR), graphene platelet reinforced (GPLR), graphene oxide 

reinforced (GOR), and MSH reinforced nanocomposites will be covered in the phases that follow. 

 

LITERATURE REVIEW 

Nanocomposites (CNTR)  

The first type of nanocomposite that caught the researchers' attention was CNTR nanocomposites. The 

mechanical performance of CNTR nanocomposite structures under various static and dynamic excitations has recently 

been the subject of numerous publications published in prestigious international journals and conferences. Shi, Feng, 

Huang, Hwang, and Gao [7] reported an analysis about the constitutive equations of such nanocomposite materials with 

respect to the effects of the aggregation of the nanofillers as well as their intrinsic wavy nature in one of the early 

studies about the CNTR nanocomposites. In this study, two significant problems that arise in the actual world were 

taken into account, and the elasticity tensor of CNTR nanocomposites was computed in relation to these problems. 

Because of their enormous length-to-radius ratio, CNTs will in fact have a sinusoidal wavy shape, and this fact was 

taken into account in this research via the creation of a novel continuum mechanics-based method. The influences of 

CNT aggregation, which occurs due to the high surface to volume ratio of the nanosize fillers, were also taken into 

account in this study along with the effects of waviness. Ke, Yang, and Kitipornchai [8] used a finite element (FE) based 

formulation in another study on the CNTR nanocomposite structures in order to investigate the natural frequency 

characteristics of beams made of such nanocomposites. In addition, the effects of three different boundary conditions, 

such as simply supported-simply supported (S-S), clamped-clamped (C-C), and clamped-simply supported (C-S) ones, 

were covered in the research obtained by Ke, Yang, and Kitipornchai [8]. In this paper, the obtained governing 

equations were solved by the well-known Ritz method regarding the influences of nonlinear strain-displacement 

relations in the framework of the Timosh Researchers have found a solution to the problem of thermally influenced 

stability of FG nanocomposite plates and shells reinforced with CNTs [9, 10].  

On the basis of the well-known third-order shear deformation theory, the effects of geometric nonlinearity were 

taken into account in the aforementioned studies (TSDT). Shen and Xiang [11] used a similar approach to investigate 

the vibrational responses of CNTR nanocomposite shells in regard to the impact of nonlinear von Karman relations. 

Once more, this study covered the effects of various nanofiller distribution types. The effects of shear deformation were 

taken into account up to the third order in this investigation. Furthermore, Sobhani Aragh, Nasrollah Barati, and 

Hedayati [12] used the Eshelby-Mori-Tanaka micromechanical homogenization scheme to take into account the effects 

of nanofillers' agglomeration as well as the aligned or straight being of the CNTs on the natural frequency of FG-CNTR 

nanocomposite panels. They were able to use the well-known generalized differential quadrature method (GDQM), a 

potent numerical technique, to tackle the vibration problem. In a different analysis, Wang and Shen [13] examined the 

vibrational properties of FG-CNTR nanocomposite rectangular plates supported on an elastic medium within the TSDT 

of plates and in the presence of thermal loading to present a trustworthy thermal analysis. They also took into account 

the temperature-dependency of the CNTs' material properties. Yas and Samadi [14] utilized the GDQM by examining 

the impacts of different types of nanofillers distributed over the thickness of the beam-type element by performing static 

buckling and dynamic frequency assessments of CNTR nanocomposite beams within the context of the Timoshenko 
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beam theorem. In the framework of an elasticity-type methodology for the static assessments of CNTR nanocomposite 

plates and panels with smart piezoelectric controllers, Alibeigloo [15], [16] combined the increased properties of CNTR 

nanocomposites with the smart features of piezoelectric materials. Additionally, Alibeigloo and Liew [17] presented a 

thermal static stress analysis to ascertain the stress diagrams of FG-CNTR nanocomposite plates within the confines of 

the elasticity theorem. In this study, the analytical solution for the S-S beams was used to solve the problem's governing 

equations. The stability issue of FG-CNTR nanocomposite beams in the presence of inertial effects was examined by 

Ke, Yang, and Kitipornchai [18]. The investigation of nanocomposite structures' dynamic stability can benefit from this 

article's findings regarding outcomes. The linked governing equations of the problem were resolved using the DQM in 

this research. Lei, Liew, and Yu [19] used a FE-based kp-Ritz approach in another article to examine the free vibration 

responses of FG-CNTR nanocomposite plates. Two micromechanical homogenization techniques were used in this 

study to enhance the nanocomposite's equivalent material properties. The first is an expanded version of the well-known 

mixture rule, and the second is the Eshelby-Mori-Tanaka technique, which can take the agglomeration of nanofillers 

into account. Additionally, the effects of shear deflection were taken into account in this research up to the first order. 

Malekzadeh and Shojaee [20] investigated the stability issue of quadrilateral plates made up of a few CNTR 

nanocomposite layers while shear deformation influences were taken into account in the FSDT of plates. The edges of 

the examined plate were thought to be either simply supported or clamped. The molecular dynamic (MD) simulation 

coefficients were used to obtain the effective material properties of the CNTR nanocomposite using the rule of the 

mixing. Three-layered smart beams with a FG-CNTR nanocomposite core and two upper and lower smart piezoelectric 

facesheets were the subject of research by Rafiee, Yang, and Kitipornchai [21].  

In this study, the effects of shear deformation are not considered. Following the previous research, Rafiee, Yang, 

and Kitipornchai [22] addressed the bifurcation-type buckling issue in smart nanocomposite beams. In this study, the 

von-Karman relations for Euler-Bernoulli beams were extended while assuming that the structure was built of a CNTR 

nanocomposite material with two piezoelectric facesheets. Shen and Xiang [23] completed a huge nonlinear large 

amplitude static and dynamic study on the bending, vibration, and buckling issues of CNTR nanocomposite beams 

using a higher-order beam hypothesis combined with von-nonlinear Karman's strain-displacement relations. Thermal 

gradients were present when this study was being done. When the shell is expected to be susceptible to axial and radial 

excitations, Shen and Xiang [24] used a perturbation-based approach to resolve the problem of thermo-elastic 

postbuckling analysis of CNTR nanocomposite shells. This approach also took the effects of shear deformation into 

consideration. On the basis of the theory of elasticity and 3D analysis, Yas, Pourasghar, Kamarian, and Heshmati [25] 

used the GDQM solution for the free vibration analysis of nanocomposite shells reinforced with CNTs. With a related 

study, Alibeigloo [26] reported a 3D elasticity solution for cylindrical CNTR nanocomposite shells wrapped in 

piezoelectric layers using Fourier expansions. On the other hand, an analysis obtained by Ansari, Faghih Shojaei, 

Mohammadi, Gholami, and Sadeghi [27] dealing with the forced vibration problem of CNTR nanocomposite beams 

with respect to various distributions of CNTs across the thickness of the structure included the effects of neutral surface 

and von-Karman type nonlinearity. This study also considered the impact of firstorder shear deflection. Later, 

Heydarpour, Aghdam, and Malekzadeh [28] studied the natural frequency characteristics of conical shells made from 

nanocomposite materials enhanced with CNTs. They did this by employing the effective numerical DQM. The FSDT's 

kinematic relations were used in this study to derive the problem's governing equations. Lei, Zhang, Liew, and Yu [29] 

used FE formulas to find the critical buckling load of CNTR nanocomposite panels and successfully resolve the 

problem. The utilized FE method (FEM) is known as the element-free kp-Ritz technique since it can solve the problem 

without dividing the structure into a significant number of elements. It is important to note that the static and dynamic 

responses of CNTR nanocomposite structures have been studied in numerous articles whenever it is anticipated that the 

continuous system will be subjected to various mechanical and thermal loadings. The mechanical study of the 

nanocomposite structure in these studies used a variety of beam, plate, and shell theories to either include or remove the 

effects of shear deformation. The fact that these issues were resolved using both analytical and numerical methods is 

especially intriguing. It is not intended to discuss every one of these publications here; instead, readers are strongly 

urged to consult Refs. [30-57].  

As previously mentioned, it is crucial to take into account how the agglomeration of CNTs affects the mechanical 

responses of CNTR nanocomposite structures because, in the real world, this phenomenon occurs and some nanofillers 

will be involved in the van der Waals (vdW) potential of the others, resulting in an uneven distribution of NTs that is by 
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no means admirable. As a result, some scientists tried to take this problem into account when they were analyzing the 

mechanical properties of CNTR nanocomposite beams, plates, and shells. To enrich the governing equations of the 

vibration problem of CNTR nanocomposite doubly-curved shells with respect to the effects of CNTs agglomeration, 

Tornabene, Fantuzzi, Bacciocchi, and Viola [58] developed the well-known Carrera Unified Formulation (CUF) for a 

higher-order shear deformation shell theory with dual curvature. This is one of the most significant articles in this field. 

A graded distribution for the volume percentage of the nanofillers throughout the thickness of the shell was used to 

represent the aggregation phenomenon. Wu, Yang, and Kitipornchai [59] explored the vibrational properties of 

FGCNTR nanocomposites by combining the effects of geometrical nonlinearity with geometrical imperfection for the 

Timoshenko beam hypothesis. They did this by utilizing the so-called Ritz method as a potent FEM. Zhang, Liew, and 

Reddy [60], [61] found a solution to the postbuckling issue of FG-CNTR nanocomposite shear deformable plates taking 

into account the effects of both axial and biaxial type compressions. Zhang, Song, and Liew [62] demonstrated the use 

of piezoelectric patches to control the mode forms of fluctuations in a CNTR nanocomposite plate using Reddy's TSDT.  

The top and bottom surfaces of the plate are where the piezoelectric actuators and sensors are situated, respectively. 

However, Ansari, Torabi, and Faghih Shojaei [63] used the variational DQM (VDQM) for sector plates with different 

boundary conditions to explore the buckling and vibration issues of CNTR nanocomposite sector plates (BCs). Civalek 

[64] used the governing equations obtained from the FSDT to use the discrete singular convolution method (DSCM) to 

evaluate the vibrational behaviors of FGCNTR nanocomposite shells and plates. Ebrahimi and his collaborators [65, 66] 

investigated the thermally influenced dynamic behaviors of beams and plates composed of FG-CNTR nanocomposite 

layers on the basis of higher-order shear deformation beam and plate hypotheses. In a separate project, Fantuzzi, 

Tornabene, Bacciocchi, and Dimitri [67] carried out an isogeometric analysis (IGA) to investigate the free vibration 

problem of FG-CNTR nanocomposite plates with arbitrary shapes with reference to the impacts of the aggregation of 

the nanosize reinforcements. On the basis of the FSDT, they calculated the motion equations for the plate. Garca-Macas, 

Rodrguez-Tembleque, CastroTriguero, and Sáez [68] obtained a numerical analysis to take into account the 

postbuckling issue of FG-CNTR nanocomposite panels while the structure is being compressed axially. This 

investigation takes into account both the aligned or straight insertion of the NTs into the matrix and the impacts of the 

nanofillers' aggregation. The vibration problem of FGCNTR nanocomposite beams in the presence of thermal loading 

was solved by Ghorbani Shenas, Malekzadeh, and Ziaee [69] using the FE-based Ritz technique with Chebyshev shape 

functions. In this study, it was decided that the effects of the pre-twisting phenomena, which occurs in long CNTs, 

would show more trustworthy results. Additionally, Kumar and Srinivas [70] implemented layer-wise composite 

analysis for the static and dynamic issues of CNTR nanocomposite plates within the context of higher-order shear 

deformable plate theories. On the basis of higher-order shear deformation shell theories, Nejati, Asanjarani, Dimitri, and 

Tornabene [71] used the GDQM to enhance the natural frequency of FGCNTR nanocomposite conical shells. Shi, Yao, 

Pang, and Wang [72] used the Ritz technique to solve the free vibration problem of the aforementioned structure, 

focusing on the impact of arbitrary BCs on the change of the natural frequency of FG-CNTR nanocomposite beams. In 

a related article, Wang, Cui, Qin, and Liang's investigation into the impact of BCs on the dynamic behaviors of FG-

CNTR nanocomposite shallow shells was discussed [73].  

In order to account for the impact of shear deflection up to first-order, the shell was modelled using the FSDT in 

this article. Wang, Qin, Shi, and Liang [74] studied the free vibration problem of FG-CNTR nanocomposite 

axisymmetric shells and panels with respect to various types of BCs using the Ritz-variational energy approach. On the 

basis of the meshless Ritz approach, Zarei, Fallah, Bisadi, Daneshmehr, and Minak [75] presented a numerical study 

addressing the thermally impacted impact responses of FG-CNTR nanocomposite plates taking into account the affects 

of various BCs. In this investigation, the impact of temperature on the nanocomposite structure's impact reactions was 

taken into consideration, specifically for reference temperatures of 300, 500, and 700 Kelvin. Zhang, Song, Qiao, and 

Liew [76] applied the TSDT of Reddy to examine the dynamic reactions of FG-CNTR nanocomposite cylinders under 

the influence of an impactor. In this study, the shell was taken to be S-S, which made it simple to use the well-known 

Navier's method to solve the motion equations. Regarding the effects of the temperature environment on the critical 

buckling load of the beam, Ebrahimi and Farazmandnia [77] found a solution to the stability problem of the 

multilayered CNTR nanocomposite beams. In a different research endeavor, Ebrahimi, Rostami [78, [79]] used an 

effective exponential analytical solution method to handle the wave dispersion problem of CNTR nanocomposite beams 

and plates. In the context of an axisymmetric investigation pertaining to general BCs, Wang, Pang, Qin, and Liang [80] 
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connected the FG-CNTR nanocomposite structures to a series of springs to apply the FSDT to handle the natural 

vibration problem of the nanocomposite shells and panels. Using FE formulas, Zghal, Frikha, and Dammak [81] 

reviewed the nonlinear bending problem of FGCNTR nanocomposite doubly-curved shells. The shear deformation 

effects were taken into account in this study up to third-order to produce the TSDT of Reddy. Another attempt to give a 

numerical solution to ascertain the natural frequency of FG-CNTR nanocomposite circular and annular complete or 

sector plates based upon the well-known FSDT of plates in the polar coordinate system was made by Zhong, Wang, 

Tang, Shuai, and Qin [82].  

On the other hand, Zhu, Jeong, Lim, and Yun [83] examined the constitutive behaviors of CNTR nanocomposite 

materials taking into account the effects of CNTs' waviness and their orientation in the media. Based on a probabilistic 

multi-scale modeling procedure, this simulation was run. Additionally, Ebrahimi, Hajilak, Habibi, and Safarpour [84] 

conducted a thermo-mechanical buckling investigation on the CNTR nanocomposite shells with regards to the affects of 

the viscous fluid flow in the shell. The nanocomposite structure is viewed as spinning around its axial axis in this study. 

Recently, a Mori-Tanaka based inquiry about the constitutive equations of CNTR nanocomposites containing wavy 

CNTs explored the impact of the interface between nanofillers and matrix. 

 

Nanocomposites (GR) 

GR nanocomposites are undoubtedly a perfect substitute for other types of nanocomposite materials in 

engineering applications. Similar to CNTR nanocomposites, these materials can be strengthened to be employed in 

certain applications by adding graphene to the original matrix of the nanocomposite. There are numerous studies that 

discuss the analysis of continuous systems made of GR nanocomposites. For instance, Mirzaei and Kiani [85] used the 

FSDT of plates to account for the shear deformation up to first-order in the NURBS mathematical approximation to 

obtain an IGA regarding the thermo-mechanical buckling problem of FG-GR nanocomposite plates. Shen, Lin, and 

Xiang [86] conduct a nonlinear analysis to examine the thermal vibration behaviors of FG-GR nanocomposite beams 

while assuming that the structure is supported by an elastic substrate. Reddy's TSDT was used in this study to acquire 

the kinematic relations of the beam-type element, and a two-step perturbation technique was used to solve the achieved 

equations. Shen, Lin, and Xiang [87] have looked into the thermal stability and bending studies of GR nanocomposite 

beams within the context of the nonlinear expansion of higher-order shear approximation beam theories. The resultant 

nonlinear governing equations were solved using a two-step perturbation method, just like in the earlier article these 

authors proposed. On the basis of higher-order shell theories, Shen, Xiang, and Fan [88] investigated the nonlinear 

vibration responses of GR nanocomposite shells. The aforementioned paper also discussed the effects of exposing the 

shell to a temperature environment. Shen, Xiang, and Lin [89] have looked into the problem of thermally influenced 

buckling and postbuckling of FG-GR nanocomposite plates in relation to the temperature dependence of the material 

properties of graphene. The higher-order kinematic plate hypothesis was used to simulate the plate in this article, and it 

is assumed that the plate is resting on an elastic medium. The nonlinear deflection behaviors of FG-GR nanocomposite 

plates whenever the plate is placed on an elastic foundation were demonstrated by the same authors in a different study 

[90]. Shen, Xiang, Lin [91] and Shen, Xiang, Lin, Hui [92] investigated the effects of nonlinear straindisplacement 

relationship on the thermo-elastic natural frequency and buckling load behaviors of FG-GR nanocomposite plates while 

presuming that the structure under study is resting on an elastic substrate. Some researchers investigated the problem of 

GR nanocomposites' low-velocity impact reactions using higher-order shear deformation kinematic theories [93, 94]. To 

regulate the dynamic reactions of the continuous system when assaulted by an impactor, these publications assumed that 

the beam- and plate-type structures were made from multilayered GR nanocomposites and embedded on a viscoelastic 

substrate. 

An FE research on the bending behaviors and natural frequency features of nanocomposite plates reinforced with 

both graphene and CNT was conducted by Garca-Macas, Rodriguez-Tembleque, and Sáez [95]. The micromechanical 

homogenization technique that is being used is strong enough to calculate the effects of CNT agglomeration on the 

mechanical responses of the plate. Additionally, the governing equations were developed using a plate-specific 

expansion of the FSDT. In the context of a NURBS-based IGA, Kiani [96] investigated the large amplitude natural 

frequency behaviors of FG-GR nanocomposite higherorder plates in the presence of heat loading. On the basis of first- 

and third-order kinematic theories of beams and plates, respectively, the postbuckling characteristics of FG-GR 

nanocomposite beams and plates were examined [97, 98]. Lei, Su, Zeng, Zhang, and Yu [99] used the kp-Ritz numerical 

solution for the FSDT-based thermal stability analysis of multi-layered FG-GR nanocomposite plates. In a different 
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project, researchers developed independent publications that examined the effects of axial compression, heat loading, 

and external pressure on the critical postbuckling responses of cylindrical shells and panels made from FG-GR 

nanocomposite materials [100-102]. Additionally, Shen, Xiang, Fan, and Hui developed the nonlinear von-Karman 

relations to examine the bending and vibration behaviors of FG-GR nanocomposite panels in connection to the effects 

of the temperature environment on the mechanical response of the continuous system [103], [104]. The displacement 

field of the TSDT of Reddy served as the basis for deriving the motion equations. When the plate is assumed to be 

embedded on a viscoPasternak substrate, Fan, Xiang, and Shen [105] obtained a forced vibration analysis on the FG-GR 

nanocomposite shear deformable plates. The geometrical nonlinearity of the von-Karman type was thought to provide 

more trustworthy results in this research. In the most recent study in this area, Kiani [106] implemented a FE solution in 

conjunction with the FSDT to undertake a thermal buckling analysis of FG-GR nanocomposite conical shells. 

 

Nanocomposites (GPLR) 

In recent years, anocomposites has been GPL. These nanostructures have the same TPa order Young's moduli as 

CNT or graphene itself. In addition to their enhanced mechanical characteristics, GPLR nanocomposites are said to also 

exhibit superior thermal and electrical properties [107]. In regards to the effects of the presence of porosities in the 

nanocomposite media, Kitipornchai, Chen, and Yang [108] presented the vibrational responses of FGGPLR 

nanocomposite beams on the basis of the FSDT of beams integrated with the Ritz technique. According to the kinematic 

relationships of the FSDT of rectangular plates, Song, Kitipornchai, and Yang [109] examined both the free and forced 

vibration responses of FG-GPLR nanocomposite plates. For the BCs with simple support, the governing equations were 

solved within the framework of the well-known Naviertype solution. Song, Yang, Kitipornchai, and Zhu [110] 

investigated the nonlinear buckling and postbuckling properties of FG-GPLR multi-layered nanocomposite plates using 

the perturbation method. The impact of the first flaw was also taken into account in this work. A different study using 

the effective DQ numerical discretization method was done by Wu, Kitipornchai, and Yang [111] to analyze the 

thermally impacted stability of FG-GPLR nanocomposite plates. Using the strain-displacement relations of the FSDT, 

Wu, Yang, and Kitipornchai [112] examined the dynamic buckling reactions of FG-GPLR nanocomposite beams. 

Additionally, the effect of thermally loading the nanocomposite is taken into account. The governing equations were 

numerically solved using the well-known DQM. Feng, Kitipornchai, and Yang [113] carried out static deflection and 

stress evaluations of FG-GPLR nanocomposite beams based on the nonlinear von-Karman relations in conjunction with 

the FSDT. The FE-based Ritz approach was used to solve the resulting equations. On the basis of the FSDT, Yang, Wu, 

and Kitipornchai [114] examined the buckling and postbuckling reactions of FG-GPLR nanocomposite beams. 

Additionally, to improve the mechanical responses of C-C, C-S, and S-S beams, Feng, Kitipornchai, and Yang [115] 

acquired the nonlinear vibration analysis of GPLR nanocomposite beams within the Ritz method framework. The von-

Karman relations and displacement field on higher-order beam hypothesis were integrated by Barati and Zenkour [116] 

to address the postbuckling issue of FG-GPLR nanocomposite structures. This study considered both the effect of 

geometrical imperfections and the effect of media porosities. First-order porous GPLR nanocomposite beams' 

postbuckling load and natural frequencies were discovered by Chen, Yang, and Kitipornchai [117] using the numerical 

Ritz technique. Researchers looked into how the presence of porosities in the nanocomposite material affected the 3D 

elasticity solution of thermally induced bending behaviors of GPLR nanocomposite rectangular and circular plates [118, 

119]. Barati and Zenkour [120] addressed the problem of postbuckling analysis of FG-GPLR nanocomposite beams 

within the scope of an iteration-free analytical method with regard to the geometrical beam flaw.  

Bahaadini and Saidi [121] addressed the vibrational responses of blades in supersonic airflow by applying the 

Timoshenko beam hypothesis in conjunction with the constitutive equations of GPLR nanocomposite materials. 

Furthermore, Barati and Zenkour [122] used the FSDT of shells to track the dynamic behaviors of FG-GPLR 

nanocomposite cylinders. In this study, the Halpin-Tsai micromechanical scheme with the saturated porous model was 

extended to include the effect of the porous nature of the nanocomposite material. The natural frequency characteristics 

of GPLR porous nanocomposite shells were examined by Dong, Li, Chen, and Yang [123] with regard to the impact of 

the structure's rotating motion along its axial axis. An examination by Dong, Zhu, Wang, Li, and Yang [124] in search of 

the natural frequency of GPLR shells incorporated the nonlinearity effect in addition to that of the axial loading in a 

publication dealing with the frequency behaviors of spinning nanocomposite shells. Ebrahimi, Habibi, and Safarpour 

[125] conducted a wave dispersion study of cylindrical shells reinforced with GPLs while taking into account the 

impacts of the thermal environment and porosities on the dispersion curves of nanocomposite shells. The natural 
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frequency of conventional nanocomposite plates enhanced with GPLs was determined using von-Karman relations 

[126]. For several kinds of BCs, the nonlinear set of governing equations was solved using DQM. In a different 

publication, Gholami and Ansari [127, 128] used shear deformable plate theories to conduct a nonlinear frequency 

analysis of GPLR nanocomposite rectangular plates. IMLS-Ritz technique, an effective numerical method, was used to 

examine the static and dynamic behaviors of quadrilateral non-rectangular FG-GPLR nanocomposite plates [129, 130]. 

The FSDT of plates served as the foundation for the governing equations. By expanding a new micromechanical 

technique, Hosseini and Zhang [131] examined the thermomechanical transient properties of GPLR nanocomposite 

cylinders. The finite difference method and the Newmark method were used to produce the time-dependent responses of 

the shell. In contrast, Li, Wu, Chen, Cheng, Liu, Gao, and Liu [132] conducted an IGA-based numerical analysis to 

determine the deflection, buckling load, and natural frequency characteristics of FG-GPLR nanocomposite plates with 

metallic matrix based upon both FSDT and TSDT. The damped dynamic behaviors of porous GPLR nanocomposite 

plates were investigated by Li, Wu, Chen, Liu, Yu, and Gao [133] while taking into account the geometrical nonlinearity 

mixing the displacement field of the Kirchhoff-Love plate hypothesis with the nonlinear von-Karman relations. In this 

investigation, it was possible to determine the natural frequency, dynamic deflection, and dynamic buckling load of the 

aforementioned structure. Liu, Kitipornchai, Chen, and Yang [134] investigated the buckling and vibration responses of 

FG-GPLR nanocomposite cylindrical shells using 3D elasticity while accounting for the impact of the presence of an 

initial pre-stress in the structure. Different distributions of GPLs were taken into consideration. Additionally, according 

to the FSDT, Reddy, Karunasena, and Lokuge [135] examined the vibrational properties of FG-GPLR nanocomposite 

plates placed on an elastic substrate. GPLR nanocomposite plates were subjected to elastic bending and buckling 

analysis by Song, Yang, and Kitipornchai [136] with regard to the effect of shear deformation up to first-order. They 

used the well-known Navier's approach to solve the aforementioned issues analytically. Wang, Chen, Hao, and Zhang 

[137] used a higher-order shear approximation hypothesis to address the bending and vibration issues associated with 

GPLR nanocomposite doubly-curved shallow shells. On the other hand, Wang, Feng, Zhao, Lu, and Yang [138] studied 

the problem of torsional buckling responses of FG-GPLR nanocomposite shells with cutout utilizing approximations of 

the FEM. Additionally, Wang, Feng, Zhao, and Yang [139] used FEM to resolve the buckling issue with FG-GPLR 

nanocomposite shells with cutouts. Using the effective discretization of the DQM, Wu, Yang, and Kitipornchai [140] 

examined the dynamic buckling behaviors of FG-GPLR nanocomposite plates. The FSDT served as the foundation for 

the motion equations. Yang, Mei, Chen, Yu, and Yang [141] created a 3D elasticity-based solution for the bending 

responses of FG-GPLR nanocomposite elliptical plates. On the basis of the Euler-Bernoulli beam hypothesis in the 

polar coordinate system, Yang, Yang, Liu, and Fu [142] conducted the nonlinear stability analysis of GPLR 

nanocomposite arches.  

In an analytical solution method, Blooriyan, Ansari, Darvizeh, Gholami, and Rouhi [143] investigated the 

postbuckling behaviors of GPLR nanocomposite shells while taking into account the combined impacts of axial and 

lateral excitations. In a different study, Gholami and Ansari [144] studied the stability and frequency characteristics of 

GPLR nanocomposite plates using variational DQM (VDQM) and the nonlinear expansion of higher-order plate theory. 

Additionally, Haboussi, Sankar, and Ganapathi [145] conducted a FE-based analysis to determine the dynamic buckling 

load of spherical shells reinforced by GPLs using higher-order kinematic theories in the presence of a pressure on the 

structure. Qaderi, Ebrahimi, and Seyfi [146] conducted the damped frequency analysis of FG-GPLR nanocomposite 

beams supported on a three-parameter viscoPasternak medium using a higher-order beam model. using a modified 

version of the Hertz impact model. By combining the von-Karman relations with the FSDT, Song, Li, Kitipornchai, Bi, 

and Yang [147] examined the low-velocity impact responses of FG-GPLR nanocomposite plates. The nonlinear 

frequency behaviors of porous FGGPLR metal foam cylinders for simply supported shells, according to the classical 

theory of shells omitting the effects of shear deflection, have recently been studied by Wang, Ye, and Zu [148]. The 

stiffness and yield strength of nanocomposites can be amplified by GO nanosize reinforcement in a remarkable way, in 

addition to the previously mentioned nanoparticles that were utilized in their manufacture [149]. From this point on, a 

few of the researchers focused their work on examining the elastic properties of nanocomposites enhanced by GO. The 

creation of hydrogenated carboxylated nitrile-butadiene rubber nanocomposites amplified with GO shown that adding a 

small amount of GO to the initial matrix can significantly increase the resulting material's Young's moduli [150]. In 

recent years, there have been an increasing number of investigations into the improvements in GOR cement- or epoxy-

based nanocomposites, and all of the proposed studies have emphasized the critical contribution of GO to the 
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enhancement of the primary matrix's material properties [151–153]. Even though GOR nanocomposites have improved 

mechanical properties, there aren't many studies in the literature on nanocomposites that discuss the static or dynamic 

reactions of structures made of GOR nanocomposite materials. In one of the most recent initiatives in this sector, 

Zhang, Li, Wu, Zhang, Wu, Jiang, and Chai [154] used the FSDT of beams to investigate the bending, buckling, and 

vibration behaviors of FG-GOR nanocomposite beams. Ebrahimi, Nouraei, and Dabbagh [155] have solved the 

thermally affected vibration problem of FG-GOR nanocomposite plates using a higher-order refined plate model. 

Utilizing the Navier-type analytical solution, the natural frequencies were obtained for the totally simple supported 

plates. 

 

Nanocomposites (MSH) 

In recent times, a brand-new class of nanocomposites has caught the interest of researchers as being superior than 

the aforementioned kinds of nanocomposite materials. This brand-new class of nanocomposites, known as MSH 

nanocomposites, uses macroscale fibers in conjunction with nanoscale reinforcements. Each of the following materials 

can be used to create nanocomposites, including nanofiller and macroscale fibers: CNT, graphene, GPL, and GO. The 

homogeneity of such materials is crucial, and Thostenson, Li, Wang, Ren, and Chou [156] achieved this process in the 

early 2000s as part of an experimental investigation. Mareishi, Rafiee, He, and Liew [157] used the nonlinear strain-

displacement relations of the Timoshenko beam mode to investigate the bending, buckling, and vibration behaviors of 

MSH smart nanocomposites. Rafiee, Liu, He, and Kitipornchai's nonlinear vibration analysis of smart piezoelectric 

MSH nanocomposite plates was completed [158] using the FSDT combined with the von-Karman relations for 

rectangular plates. The well-known Galerkin's approach was used to solve the enhanced governing equations. He, 

Rafiee, Mareishi, and Liew also carried out the damped viscoelastic dynamic analysis of MSH nanocomposite beams 

[159].  

The natural frequency of rotational MSH nanocomposite beams with arbitrary cross-section shapes was 

estimated by Rafiee, Nitzsche, and Labrosse [160]. Additionally, Ebrahimi and Habibi [161] used Reddy's TSDT 

combined with von-Karman relations to examine the thermo-mechanical low-velocity impact behaviors of MSH 

nanocomposite plates. Rafiee, Nitzsche, and Labrosse [162] investigated the nonlinear mechanical responses of MSH 

nanocomposite beams reinforced with GPLs as the nanosize reinforcing element on the basis of the classical beam 

theory. Researchers working with the constitutive equations of MSH nanocomposite materials conducted 

micromechanical investigations with respect to the naturally wavy nature of long and slender CNTs in the presence of 

the agglomeration of nanofillers [163-165]. Gholami and Ansari [166] presented a nonlinear bending study concerning 

the MSH nanocomposite structures using the TSDT in order to take into account the effects of various types of BC on 

the mechanical deflection of plates. Ebrahimi and Dabbagh [167] used the higherorder shear deformable beam 

hypothesis to ascertain the natural frequency of MSH nanocomposite beams whenever the structure is exposed to 

temperature conditions. In order to characterize MSH nanocomposite materials with various types of nanofillers, Rafiee, 

Nitzsche, Laliberte, Hind, Robitaille, and Labrosse [168] obtained the necessary data. Dabbagh, Rastgoo, and Ebrahimi 

[169] proposed a numerical FE study to determine the natural frequency of MSH nanocomposite shear deformable 

beams in consideration of the effects of nanofillers' aggregation in the nanocomposite media in one of the most recent 

studies addressing the mechanical responses of nanocomposite continuous systems. Later, Ebrahimi and Dabbagh [170] 

used a shear deformable beam hypothesis combined with the basic FE approximations to study the vibrational 

properties of MSH nanocomposite beams reinforced with GO and CF. In order to examine the stability responses of 

MSH nanocomposite structures based on smart shape memory alloy (SMA) with account of the effect of heat gradient 

as well as moisture concentration, Karimiasl, Ebrahimi, and Akgöz [171] adapted the TSDT for the doubly-curved 

shells. Additionally, a vibration study project to ascertain the free and forced vibrational properties of MSH smart 

nanocomposite doublycurved shells took the nonlinearity effects into account [172, 173]. 

. 

CONCLUSION 

The aforementioned discussions were put forth to demonstrate the amazing scientific efforts made by a diverse 

group of researchers who were looking for the mechanical behaviors of nanocomposite materials and structures while 

taking into account the effects of various working conditions and realistic phenomena. As a succinct conclusion, it is 

clear that the authors were able to address nearly all of the issues that could be identified with CNTR nano composites. 

Several attempts to analyze the mechanical responses of such nanocomposites explored the impacts of the 
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agglomeration and waviness of the nanofillers. Additionally, a lot of studies have been written about the mechanical 

properties of GR and GPLR nanocomposites. However, there is a lack of research on the behaviour of GOR and MSH 

nanocomposite materials and structures, leading to a number of unsolved issues in these areas. Researchers are advised 

to consider the realistic phenomena that occur during the fabrication of nanocomposites, such as the agglomeration of 

nanoparticles and the creation of the interphase zone between the nanoparticle and the initial matrix, when analyzing the 

mechanical responses of these types of nanocomposites. 
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