Web-Based Rice Disease Diagnosis Expert System Using Fuzzy Tsukamoto Method and K-Nearest Neighbor Algorithm
DOI:
10.47709/cnahpc.v3i2.980Keywords:
Expert System, Fuzzy Tsukamoto, Web Based, K-Nearest Neighbor, Rice PlantDimension Badge Record
Abstract
Technology today is growing rapidly from year to year, not least started to spread to the agricultural sector. With the information technology making society more easily in search of information via the internet from your smart device. The goal of this study was made to facilitate the community, especially farmers in helping to diagnose diseases and pests in rice plants. Rice plants can be attacked by a wide variety of diseases and pests with a wide variety of symptoms experienced in rice plants. To know the kind of disease on rice plants in the era of technology, it takes an expert system that can help detect the disease in rice plants. In this study, Expert System-Based Website using Tsukamoto Fuzzy method and the Algorithm of K-Nearest Neighbor whose purpose is to help people, especially farmers in diagnosing diseases and pests in rice plants by looking at the symptoms of the attack on the rice plant. Data was obtained from the Research and the Ministry of Agriculture then taken some sample data for testing done. The results of the testing data of this expert system is the result of late diagnosis in diseases of the rice with the symptoms that already exist based on the data that have been obtained with an accuracy rate of 92,88%.
Downloads
Abstract viewed = 617 times
References
A. Saepulloh, D. D. S. F. (2016). Pengembangan Sistem Pakar Diagnosis Penyakit dan Hama Pada Tanaman Padi Varietas Sarinah Berbasis Android. Jurnal Algoritma, 13, 149–156.
Asmira, & Syamsul Alam. (2020). Aplikasi Sistem Pakar Pengidentifikasi Penyakit Dan Hama Pada Tanaman Padi Berbasis Android. Simkom, 5(2), 19–27. https://doi.org/10.51717/simkom.v5i2.44
Bianome, R. M., Nabuasa, Y. Y., & Sina, D. R. (2020). Diagnosa Hama Dan Penyakit Pada Tanaman Padi Menggunakan Metode Naive Bayes Dan K-Nearest Neighbor. Jurnal Komputer Dan Informatika, 8(2), 156–162. https://doi.org/10.35508/jicon.v8i2.2906
H. B. Prajapati, J. P. Shah, V. K. D. (2017). Detection and classification of rice plant diseases. Intell. Decis. Technol, 11, 357–373.
Handayani, S., & Nurcahyo, G. W. (2021). Accuracy in Identifying Rice Plant Diseases Using Method Fuzzy. 13(1), 33–41.
Honggowibowo, A. S. (2009). Sistem Pakar Diagnosa Penyakit Tanaman Padi Berbasis Web Dengan Forward Dan Backward Chaining. TELKOMNIKA (Telecommunication Computing Electronics and Control), 7(3), 187. https://doi.org/10.12928/telkomnika.v7i3.593
Nugraha, E., Wibawa, A. P., Hakim, M. L., Kholifah, U., Dini, R. H., & Irwanto, M. R. (2019). Implementation of fuzzy tsukamoto method in decision support system of journal acceptance. Journal of Physics: Conference Series, 1280(2). https://doi.org/10.1088/1742-6596/1280/2/022031
Nurdiawan, O. (2018). Penerapan Sistem Pakar Menggunakan Metode Fuzzy Sugeno Identifikasi Tanaman Padi. JATISI (Jurnal Tek. Inform. Dan Sist. Informasi), 5, 45–59.
PRIMARTHA, R. (n.d.). BUKU ALGORITMA MACHINE LEARNING. In ALGORITMA MACHINE LEARNING. Penerbit Informatika.
Purnamawati, A., Nugroho, W., Putri, D., & Hidayat, W. (2020). Deteksi Penyakit Daun Pada Tanaman Padi Menggunakan Algoritma Decision Tree , Random Forest , Naïve Bayes , Svm Dan Knn. Info Tekjar?: Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1), 212–215.
Puryono, D. A. (2018). Sistem Informasi Pendeteksi Hama Penyakit Tanaman Padi Menggunakan Metode Fuzzy Tsukamoto Berbasis Android. 10(2), 63–69. https://doi.org/10.31219/osf.io/hpk5s
Sethy, P. K., Barpanda, N. K., Rath, A. K., & Behera, S. K. (2020). Image Processing Techniques for Diagnosing Rice Plant Disease: A Survey. Procedia Computer Science, 167(2019), 516–530. https://doi.org/10.1016/j.procs.2020.03.308
Wulandari, S., Noor Fajrian, M., Wardhana Kusuma, A., & Kusrini. (2019). Sistem Pakar Diagnosa Hama Dan Penyakit Tanaman Padi Dengan Metode Bayes. Jurnal INFORMA Politeknik Indonusa Surakarta, 5(2442–7942), 59–64.
Y. Wendra, D. A. (2020). Metode Case Based Reasoning Untuk Identifikasi Penyakit Tanaman Padi. Jursima, 8, 103–110.
Yhurinda, A. Putri, P. Sodik, A. A. (2019). Identifikasi Penyakit Tanaman Kopi Arabika dengan Metode K-Nearest Neighbor (KNN). Seminar Nasional Sains Dan Teknologi Terapan VII, 795–764.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2021 Fefi Hades Tawarai, Fauziah Fauziah, Andrianingsih Andrianingsih
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.