ac

K-Means Algorithm For Clustering Poverty Data in Bangka Belitung Island Province

Authors

  • Castaka Agus Sugianto Politeknik TEDC
  • Tri Pratiwi Olivia Riska Bokings Politeknik TEDC Bandung

DOI:

10.47709/cnahpc.v3i1.934

Keywords:

Data Mining, K-Means, Clustering, Bangka Belitung Islands, Poverty

Dimension Badge Record



Abstract

The Central Bureau of Statistics is a non-ministerial government institution that reports directly to the President. Based on data from The Central Bureau of Statistics in September 2019, the wealth rate in Indonesia was 9.22% and the number of indigent people in Indonesia reached 24.79 million. The poverty rate in the Bangka Belitung Islands Province was low compared to the national level. This is evidenced by 4.62% of people in Bangka Belitung Island Province were indigent people, which is lower than the national average of 9.22%. The data mining techniques using the K-Means Clustering method are used for this study. The research data was taken from the website of the BPS from 2014-2019 which consisted of 7 districts and/or cities with 3 variables. The variables used are the number of indigent people (in thousands), the average length of school education (years), and adjusted per capita expenditure (thousand rupiahs/year). All data is processed by Rapidminer and 3 clusters are carried out, namely: medium cluster level 0, high cluster level 1, and low cluster level 2. Cluster 0 contains districts/cities whose people have the longest average school time, high per capita expenditure, and a large number of indigent people. Cluster 1 contains districts/cities whose people have a short average school time, low per capita expenditure, a moderate number of indigent people. Cluster 2 contains districts/cities whose people have an average school time, moderate per capita expenditure, a small number of indigent people. Based on the result, the government can prioritize Kabupaten Bangka, Kabupaten Bangka Barat, Kabupaten Bangka Selatan in assisting, especially in the cost of education scholarships and social funds as well as other infrastructure improvements for the welfare of the inhabitants of Bangka Belitung Islands Province.

Downloads

Download data is not yet available.

Author Biography

Tri Pratiwi Olivia Riska Bokings, Politeknik TEDC Bandung

Komputerisasi Akuntansi

Google Scholar Cite Analysis
Abstract viewed = 663 times

References

Agustina, S., Yhudo, D., Santoso, H., Marnasusanto, N., Tirtana, A., & Khusnu, F. (2012). Clustering Kualitas Beras Berdasarkan Ciri Fisik Menggunakan Metode K-Means Algoritma. Clustering K-Means, 1–7.

Alfina, T., & Santosa, B. (2012). Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabugan Keduanya dalam Membentuk Cluster Data (Studi Kasus?: Problem Kerja Praktek Jurusan Teknik Industri ITS). Analisa PerbandinganMetode Hierarchical Clustering, K-Means Dan Gabungan Keduanya Dalam Cluster Data, 1(1), 1–5.

Anggreini, N. L. (2019). Teknik Clustering dengan Algoritma K-Medoids untuk menangani Strategi Promosi di Politeknik TEDC Bandung. Junral Teknologi Informasi Dan Pendidikan, 12(2), 1–7.

Anggreini, N. L., & Tresnawati, S. (2020). Komparasi Algoritma K-Means dan K-Medoids untuk menangani Strategi Promosi di Politeknik TEDC Bandung. Jurnal TEDC, 14(2), 120–127.

Bahuddin, A., Fatmawati, A., & Sari, F. P. (2021). Analisis Clustering Provinsi di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means. Jurnal Manajemen Informatika Dan Sistem Informasi, 4(1), 1–8.

Fajriani, F. (2019). Persebaran Tingkat Kemiskinan di Sulawesi Selatan. Seminar Nasional Teknologi Informasi Dan Komputer, 276–281.

Febianto, N. I., & Palasara, N. (2019). Analisa Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 8(2), 130–140. https://doi.org/10.32736/sisfokom.v8i2.653

Febrianti, F. A., Antonito, H. C., & Gangga, A. (2018). K-Means Clustering Dengan Metode Elbow Untuk Pengelompokan Kabupaten Dan Kota Di Jawa Timur. Seminar Nasional Hasil Riset Dan Pengabdian -SNHRP, 863–870. http://karyailmiah.unipasby.ac.id/wp-content/uploads/2019/04/K-Means-Artikel.pdf

Ferezagia, D. V. (2018). Analisis Tingkat Kemiskinan di Indonesia. Jurnal Sosial Humaniora Terapan, 1(1), 1–6. https://doi.org/10.7454/jsht.v1i1.6

Karini, P. (2018). Pengaruh Tingkat Kemiskinan Terhadap Angka Partisipasi Sekolah Usia 16-18 Tahun di Provinsi Kepulauan Bangka Belitung. Al-Ishlah: Jurnal Pendidikan, 10(1), 103–115.

Nasution, I., Windarto, A. P., & Fauzan, M. (2020). Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi. Buliding of Informatics, Technology and Science (BITS), 2(2), 76–83.

Ong, J. O. (2013). Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university. Jurnal Ilmiah Teknik Industri, vol.12, no(juni), 10–20.

Sajidah, A. (2016). Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Kesejahteraan Rakyat dengan Metode c-means dan fuzzy c-means clustering. http://repository.its.ac.id/51350/

Sari, Y. R., Sudewa, A., Lestari, D. A., & Jaya, T. I. (2020). Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer. CESS (Journal of Computer Engineering, System and Science), 5(2), 192–198. https://doi.org/10.24114/cess.v5i2.18519

Sugianto, C. A. (2015). Analisis Komparasi Algoritma Klasifikasi Untuk Menangani Data Tidak Seimbang Pada Data Kebakaran Hutan. Techno.Com, 14(4), 336–342. https://doi.org/10.33633/tc.v14i4.992

Sugianto, C. A., & Apandi, T. H. (2015). Algoritma K-Means Untuk Menangani Data Tidak Seimbang Pada Data Kebakaran Hutan. Seminar Nasional Teknologi Informasi Dan Komunikasi Terapan (SEMANTIK), 77–81.

Sugianto, C. A., Rahayu, A. H., & Gusman, A. (2020). Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Cigugur Tengah. Journal of Information Technology, 2(2), 39–44. https://doi.org/10.47292/joint.v2i2.30

Suhartini, & Yuliani, R. (2021). Penerapan Data Mining untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K- Means di Dusun Bagik Endep Sukamulia Timur. Infotek:Jurnal Informatika Dan Teknologi, 4(1), 39–50.

Sumarno, S. (2019). Angka Partisipasi Sekolah Kasar Sma Rendah Dampak Dari Tingkat Kemiskinan Dan Upaya Mengatasinya Di Provinsi Kepulauan Bangka Belitung. Jurnal Dinamika Sosial Budaya, 21(1), 28–36. https://doi.org/10.26623/jdsb.v21i1.1501

Sunia, D., Kurniabudi, & Jusia, P. A. (2019). Penerapan Data Mining untuk Clustering Data Penduduk Miskin Menggunakan Algoritma K-Means. Jurnal Ilmiah Mahasiswa Teknik Informatika, 1(2), 121–134.

Teknomo, K. (2007). K-Means Clustering Tutorial. Medicine. http://people.revoledu.com/kardi/Ctutorial/kMean/

Ulfah, A. N., & Uyun, S. (2015). Analisis Kinerja Algoritma Fuzzy C-Means Dak-Mean Pada Data Kemiskinann. Jatisi, 1(2), 139–148.

Vibha, L., Harshavardhan, G. M., Prashanth, S. J., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2007). A Hybrid Clustering And Classification Technique For Soil Data Mining. International Conference on Information and Communication Technology in Electrical Sciences, Ictes, 1090–1095.

Wahyuli, D., Handrizal, H., Parlina, I., Windarto, A. P., Suhendro, D., & Wanto, A. (2019). Mengelompokkan Garis Kemiskinan Menurut Provinsi Menggunakan Algoritma K-Medoids. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 452–461. https://doi.org/10.30645/senaris.v1i0.51

Waworuntu, N. V., & Amin, M. F. (2018). Penerapan Metode K-Means Pemetaan Calon Penerima JAMKESDA. Kumpiuan Jurnal Ilmu Komputer (KLIK), 05(02), 190–200. http://klik.ulm.ac.id/index.php/klik/article/view/157 (05 Juni 2020)

Widayani, W., & Harliana, H. (2020). Perbandingan Algoritma K-Means dan SFCM Pada Pengelompokkan Rumah Tangga Miskin. Jurnal Sains Dan Informatika, 6(1), 1–9. https://doi.org/10.34128/jsi.v6i1.200

Downloads

ARTICLE Published HISTORY

Submitted Date: 2021-02-07
Accepted Date: 2021-02-23
Published Date: 2021-02-28

How to Cite

Sugianto, C. A., & Bokings, T. P. O. R. (2021). K-Means Algorithm For Clustering Poverty Data in Bangka Belitung Island Province. Journal of Computer Networks, Architecture and High Performance Computing, 3(1), 58-67. https://doi.org/10.47709/cnahpc.v3i1.934