Regression Modeling of Zero-Inflated Negative Binomia (ZINB) in Pneumonia Cases in Toddlers in North Sumatra Province
DOI:
https://doi.org/10.47709/cnahpc.v7i1.5596Keywords:
Pneumonia, Zero Inflated Negative Binomial, Excess zerosAbstract
Pneumonia is a lung infection that causes inflammation in the air sacs within the lungs. This disease is caused by microorganisms such as bacteria, viruses, fungi, or even inhaled substances. This study aims to identify significant factors influencing the incidence of pneumonia in children under five years old in North Sumatra Province in 2022. In this case, the dependent variable has an excessive number of zero values (excess Zero), leading to overdispersion. By using the Zero Inflated Negative Binomial (ZINB) regression method, significant factors affecting the incidence of pneumonia in children under five years old in North Sumatra Province were identified. The study found that the variable of the number of low birth weight babies (BBLR) (X5) significantly influences the incidence of the disease in North Sumatra Province in 2022. It can be seen from the significant variables affecting the occurrence of pneumonia in children under five, which are 0.0406% (X1), 0.00952% (X2), 0.006506% (X3), and 2.122% (X4).
Downloads
References
Achmad, N., Payu, M. R. F., & Rahim, Y. (2022). Pemodelan Pneumonia Berat Menggunakan Regresi Zero Inflated Negative Binomial di Gorontalo. Euler?: Jurnal Ilmiah Matematika, Sains Dan Teknologi, 10(1), 45–53. https://doi.org/10.34312/euler.v10i1.13990
Ainul Fajri. (2022). Pemodelan Regresi Zero Inflated Negatif binomial Pada Data yang Mengalami Overdipersi.
Amanda, F. Mi. (2022). Implementasi Regresi Zero Inflated Negative Binomial Pada Kasus Penyakit Campak Jawa Timur Tahun 2020 Implementasi Regresi Zero Inflated Negative Binomial Pada Kasus Penyakit Campak Jawa Timur Tahun 2020.
Amanda, L., SA’ADAH, U., & WARDHANI, N. W. S. (2018). Performa Proporsi Zero-Inflation Pada Regresi Zero-Inflated Negative Binomial (Studi Kasus: Data Tetanus Neonatorum Di Jawa Timur). E-Jurnal Matematika, 7(1), 41. https://doi.org/10.24843/mtk.2018.v07.i01.p183
Dinas Kesehatan Sumatera Utara. (2022). Profil Kesehatan Provinsi Sumatera Utara 2022. Dinas Kesehatan Sumatera Utara, 2, 1–466.
Effendi, R. I. F. (2023). Performa Model Regresi Zero Inflated Negative Binomial (Zinb) Untuk Mengatasi Overdispersi Pada Distribusi Poisson (Studi Kasus: Jumlah Kematian Bayi). AT-TAWASSUTH: Jurnal Ekonomi Islam, VIII(I), 1–19.
I T Utami. (2020). Pemodelan Zero Inflated Negative Binomial (ZINB) Pada Kasus Jumlah Bepergian Penduduk Provinsi Sulawesi Tengah. Jurnal Ilmiah Matematika Dan Terapan, 17(2), 202–211. https://doi.org/10.22487/2540766x.2020.v17.i2.15302
Mar’ah, Z., Rais, Z., & Haris, A. S. (2023). Geographically Weighted Negative Binomial Regression (GWNBR) in Modeling the Risk Factors of Pneumonia Disease Among Toddlers in The Central Sulawesi Province. Journal of Statistics and Its Application on Teaching and Research, 5(3), 118–131. https://doi.org/10.35580/variansiunm151
Putri, S. (2023). Pemodelan Kasus Pneumonia Balita Dengan Menggunakan Poisson Inverse Gaussian.
Sari, F. M., & Sihombing, P. R. (2021). Pemodelan Penyakit Difteri Di Sumatera Barat Menggunakan Regresi Zero Inflated Dan Regresi Hurdle. Epsilon: Jurnal Matematika Murni Dan Terapan, 15(1), 66. https://doi.org/10.20527/epsilon.v15i1.3676
Tamimi, A., & Husein, I. (2024). Penerapan Regresi Binomial Negatif Dalam Menganalisis Faktor-Faktor Yang Mempengaruhi Stunting Pada Balita. 7(1), 103–112. https://doi.org/10.24042/djm
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hani Maulida Hasibuan, Ismail Husein

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.