Analysis of Detergent Inventory Stock at Luch Laundry Using the Linear Regression Method
DOI:
https://doi.org/10.47709/cnahpc.v7i1.5396Keywords:
Prediction, Availability, Linear regression methodsAbstract
Inventory stock management is an important aspect in the laundry business to ensure smooth operations and minimize costs. Laundry Detergent shortages or overstocks can cause service disruptions and unnecessary additional costs. Therefore, a method is needed that can help predict stock needs accurately, one of which is the linear regression method. The data used includes historical data on detergent use and other factors that influence demand over several time periods. Through linear regression analysis, a predictive model can be built to estimate detergent needs in the future, so that stocks can be managed more efficiently. Research Method, namely the survey research method, is a research method carried out using surveys or direct data collection from Laundry Luch. The method/algorithm used to analyze the data is the linear regression method. The aim of this research is to apply the linear regression method in detergent inventory stock and to carry out analysis using the linear regression method in detergent inventory stock. The research results from the data that have been collected show that the predicted stock of detergent supplies for Laundry Luch in January 2025, with an estimated total usage of 111 boxes of detergent and a target usage of 95 boxes of detergent, is 129 boxes of detergent. The research conclusion is that the linear regression method provides real benefits in supporting data-based decision making.
Downloads
References
Ababil, O. J., Wibowo, S. A., & Zulfia Zahro’, H. (2022). Penerapan Metode Regresi Linier Dalam Prediksi Penjualan Liquid Vape Di Toko Vapor Pandaan Berbasis Website. JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 186–195. https://doi.org/10.36040/jati.v6i1.4537
Almumtazah, N., Azizah, N., Putri, Y. L., & Novitasari, D. C. R. (2021). Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana. Jurnal Ilmiah Matematika Dan Terapan, 18(1), 31–40. https://doi.org/10.22487/2540766x.2021.v18.i1.15465
Azahra, A. A. (2022). Analisis Prediksi Jumlah Penerimaan Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana. Bulletin of Applied Industrial Engineering Theory, 3(1), 75–78.
Fitri, E. (2023). JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY ( JACOST ) Analisis Perbandingan Metode Regresi Linier , Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah. 4(1), 58–64.
Givan, B., Darono, H. E., & Elyana, I. (2022). Penerapan Metode Economic Order Quantity (EOQ) pada Pengendalian PersediaanTiket Berhadiah di PT Trans Rekreasindo. Jurnal Pariwisata Bisnis Digital dan Manajemen, 1(1), 10–17. https://doi.org/10.33480/jasdim.v1i1.3053
Harsiti, Muttaqin, Z., & Srihartini, E. (2022). Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet. JSiI (Jurnal Sistem Informasi), 9(1), 12–16. https://doi.org/10.30656/jsii.v9i1.4426
Hasibuan, L. H., & Musthofa, S. (2022). Penerapan Metode Regresi Linear Sederhana Untuk Prediksi Harga Beras di Kota Padang. JOSTECH: Journal of Science and Technology, 2(1), 85–95. https://doi.org/10.15548/jostech.v2i1.3802
Hidayat, K., Efendi, J., & Faridz, R. (2020). Analisis Pengendalian Persediaan Bahan Baku Kerupuk Mentah Potato Dan Kentang Keriting Menggunakan Metode Economic Order Quantity (EOQ). Performa: Media Ilmiah Teknik Industri, 18(2), 125–134. https://doi.org/10.20961/performa.18.2.35418
Huda, A. S., Awangga, R. M., & Fathonah, R. N. S. (2020). Prediksi Penerimaan Pegawai Baru Dengan Metode Multiple Linier Gression (Vol. 1). Kreatif.
Husdi, H., & Dalai, H. (2023). Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi. Jurnal Informatika, 10(2), 129–135. https://doi.org/10.31294/inf.v10i2.14129
Juwari, Kusrini, & Pramono, E. (2018). Analisis Sistem Inventory Manajemen Gudang Dengan Metode Economic Order Quantity (EOQ). JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima), 2(1), 33–40.
Miftahuljannah, Aswan Supriyadi Sunge, & Ahmad Turmudi Zy. (2023). Analisis Prediksi Penjualan Dengan Metode Regresi Linear Di Pt. Eagle Industry Indonesia. Jurnal Informatika Teknologi dan Sains (Jinteks), 5(3), 398–403. https://doi.org/10.51401/jinteks.v5i3.3325
Rusdy, A. M. A. (2022). Penerapan Metode Regresi Linear pada Prediksi Penawaran dan Permintaan Obat Studi Kasus Aplikasi Point of Sales. 3(2), 121–126.
Sebastian Rudi, W., Agus Pranoto, Y., & Xaverius Ariwibisono, F. (2023). Penerapan Metode Regresi Linier Dalam Peramalan Penjualan Kue Di Toko Karya Bahari Samarinda Berbasis Website. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2451–2457. https://doi.org/10.36040/jati.v7i4.7547
Sinaga, W. A. L., Sumarno, S., & Sari, I. P. (2022). The Application of Multiple Linear Regression Method for Population Estimation Gunung Malela District. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(1), 55–64. https://doi.org/10.55123/jomlai.v1i1.143
Syahputra, M. R., Azanuddin, & Yakub, S. (2020). Data Mining Menentukan Prediksi Stok Barang Pada PT. Siantar Top, Tbk Medan Dengan Menggunakan Metode Regresi Linier Berganda. Jurnal CyberTech, x. No.x(x).
Tech, J. C., Hanapiyah, M. A., Syahtra, Y., Yakub, S., Studi, P., Informasi, S., Studi, P., Informasi, S., Info, A., & Mining, D. (2021). Implementasi Data Mining Untuk Menganalisa Pola ( Fp-Growth ). x(x), 1–8.
Yusuf Alwy, M., Herman, H, T., Abraham, A., & Rukmana, H. (2024). Analisis Regresi Linier Sederhana dan Berganda Beserta Penerapannya. Journal on Education, 06(02), 13331–13344.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bosker Sinaga, Nera Mayana Br Tarigan, Rahmadina Marpaung, Kristof Rian Zamili

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.