Analysis of Detergent Inventory Stock at Luch Laundry Using the Linear Regression Method

Authors

  • Bosker Sinaga STMIK Pelita Nusantara, Indonesia
  • Nera Mayana Br Tarigan STMIK Pelita Nusantara, Indonesia
  • Rahmadina Marpaung STMIK Pelita Nusantara, Indonesia
  • Kristof Rian Zamili STMIK Pelita Nusantara, Indonesia

DOI:

https://doi.org/10.47709/cnahpc.v7i1.5396

Keywords:

Prediction, Availability, Linear regression methods

Abstract

Inventory stock management is an important aspect in the laundry business to ensure smooth operations and minimize costs. Laundry Detergent shortages or overstocks can cause service disruptions and unnecessary additional costs. Therefore, a method is needed that can help predict stock needs accurately, one of which is the linear regression method. The data used includes historical data on detergent use and other factors that influence demand over several time periods. Through linear regression analysis, a predictive model can be built to estimate detergent needs in the future, so that stocks can be managed more efficiently. Research Method, namely the survey research method, is a research method carried out using surveys or direct data collection from Laundry Luch. The method/algorithm used to analyze the data is the linear regression method. The aim of this research is to apply the linear regression method in detergent inventory stock and to carry out analysis using the linear regression method in detergent inventory stock. The research results from the data that have been collected show that the predicted stock of detergent supplies for Laundry Luch in January 2025, with an estimated total usage of 111 boxes of detergent and a target usage of 95 boxes of detergent, is 129 boxes of detergent. The research conclusion is that the linear regression method provides real benefits in supporting data-based decision making.

Downloads

Download data is not yet available.

References

Ababil, O. J., Wibowo, S. A., & Zulfia Zahro’, H. (2022). Penerapan Metode Regresi Linier Dalam Prediksi Penjualan Liquid Vape Di Toko Vapor Pandaan Berbasis Website. JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 186–195. https://doi.org/10.36040/jati.v6i1.4537

Almumtazah, N., Azizah, N., Putri, Y. L., & Novitasari, D. C. R. (2021). Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana. Jurnal Ilmiah Matematika Dan Terapan, 18(1), 31–40. https://doi.org/10.22487/2540766x.2021.v18.i1.15465

Azahra, A. A. (2022). Analisis Prediksi Jumlah Penerimaan Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana. Bulletin of Applied Industrial Engineering Theory, 3(1), 75–78.

Fitri, E. (2023). JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY ( JACOST ) Analisis Perbandingan Metode Regresi Linier , Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah. 4(1), 58–64.

Givan, B., Darono, H. E., & Elyana, I. (2022). Penerapan Metode Economic Order Quantity (EOQ) pada Pengendalian PersediaanTiket Berhadiah di PT Trans Rekreasindo. Jurnal Pariwisata Bisnis Digital dan Manajemen, 1(1), 10–17. https://doi.org/10.33480/jasdim.v1i1.3053

Harsiti, Muttaqin, Z., & Srihartini, E. (2022). Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet. JSiI (Jurnal Sistem Informasi), 9(1), 12–16. https://doi.org/10.30656/jsii.v9i1.4426

Hasibuan, L. H., & Musthofa, S. (2022). Penerapan Metode Regresi Linear Sederhana Untuk Prediksi Harga Beras di Kota Padang. JOSTECH: Journal of Science and Technology, 2(1), 85–95. https://doi.org/10.15548/jostech.v2i1.3802

Hidayat, K., Efendi, J., & Faridz, R. (2020). Analisis Pengendalian Persediaan Bahan Baku Kerupuk Mentah Potato Dan Kentang Keriting Menggunakan Metode Economic Order Quantity (EOQ). Performa: Media Ilmiah Teknik Industri, 18(2), 125–134. https://doi.org/10.20961/performa.18.2.35418

Huda, A. S., Awangga, R. M., & Fathonah, R. N. S. (2020). Prediksi Penerimaan Pegawai Baru Dengan Metode Multiple Linier Gression (Vol. 1). Kreatif.

Husdi, H., & Dalai, H. (2023). Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi. Jurnal Informatika, 10(2), 129–135. https://doi.org/10.31294/inf.v10i2.14129

Juwari, Kusrini, & Pramono, E. (2018). Analisis Sistem Inventory Manajemen Gudang Dengan Metode Economic Order Quantity (EOQ). JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima), 2(1), 33–40.

Miftahuljannah, Aswan Supriyadi Sunge, & Ahmad Turmudi Zy. (2023). Analisis Prediksi Penjualan Dengan Metode Regresi Linear Di Pt. Eagle Industry Indonesia. Jurnal Informatika Teknologi dan Sains (Jinteks), 5(3), 398–403. https://doi.org/10.51401/jinteks.v5i3.3325

Rusdy, A. M. A. (2022). Penerapan Metode Regresi Linear pada Prediksi Penawaran dan Permintaan Obat Studi Kasus Aplikasi Point of Sales. 3(2), 121–126.

Sebastian Rudi, W., Agus Pranoto, Y., & Xaverius Ariwibisono, F. (2023). Penerapan Metode Regresi Linier Dalam Peramalan Penjualan Kue Di Toko Karya Bahari Samarinda Berbasis Website. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2451–2457. https://doi.org/10.36040/jati.v7i4.7547

Sinaga, W. A. L., Sumarno, S., & Sari, I. P. (2022). The Application of Multiple Linear Regression Method for Population Estimation Gunung Malela District. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(1), 55–64. https://doi.org/10.55123/jomlai.v1i1.143

Syahputra, M. R., Azanuddin, & Yakub, S. (2020). Data Mining Menentukan Prediksi Stok Barang Pada PT. Siantar Top, Tbk Medan Dengan Menggunakan Metode Regresi Linier Berganda. Jurnal CyberTech, x. No.x(x).

Tech, J. C., Hanapiyah, M. A., Syahtra, Y., Yakub, S., Studi, P., Informasi, S., Studi, P., Informasi, S., Info, A., & Mining, D. (2021). Implementasi Data Mining Untuk Menganalisa Pola ( Fp-Growth ). x(x), 1–8.

Yusuf Alwy, M., Herman, H, T., Abraham, A., & Rukmana, H. (2024). Analisis Regresi Linier Sederhana dan Berganda Beserta Penerapannya. Journal on Education, 06(02), 13331–13344.

Downloads

Published

2025-02-06

How to Cite

Sinaga, B., Tarigan, N. M. B., Marpaung, R., & Zamili, K. R. (2025). Analysis of Detergent Inventory Stock at Luch Laundry Using the Linear Regression Method. Journal of Computer Networks, Architecture and High Performance Computing, 7(1), 365–376. https://doi.org/10.47709/cnahpc.v7i1.5396

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.