Optimization of Electric Power Flow Analysis Using the Gauss-Seidel Method in a Numerical Approach
DOI:
10.47709/cnahpc.v7i1.5382Keywords:
Electrical, Kirchoff, Gauss-Seidel, Python, Power flow AnalysisDimension Badge Record
Abstract
The availability of electrical energy is a fundamental requirement in modern society, supporting both daily life and industrial activities. To ensure efficient and reliable energy distribution, power flow analysis is critical. This analysis is grounded in Kirchhoff's laws, which serve as the foundation for understanding electrical circuits. Kirchhoff's Current Law (KCL) states that "the sum of electric currents entering and leaving a branch point is zero," while Kirchhoff's Voltage Law (KVL) asserts that "the sum of electromotive forces and potential drops in a closed circuit must equal zero." These laws guide the formulation and solution of equations describing power flow in electrical networks. To manage the complexity of these systems, the Gauss-Seidel method has emerged as an effective iterative technique for solving large systems of linear equations. In the context of power flow analysis, it calculates busbar voltages, active and reactive power flows, and other parameters, refining the results through successive approximations until convergence is achieved. Python is widely recognized as an ideal platform for implementing the Gauss-Seidel method due to its syntactic simplicity, flexibility, and extensive computational libraries. By leveraging Python, engineers can streamline computations and enhance the accuracy and reliability of power flow analyses. This combination of mathematical rigor and computational power not only ensures precise results but also facilitates the efficient management of complex electrical systems in modern power grids.
Downloads
Abstract viewed = 25 times
References
Anderson, P. M., & Fouad, A. A. (2002). Power System Control and Stability (2nd ed.). Wiley-IEEE Press.
Aslimeri. (2008). Teknik Transmisi Tenaga Listrik (Jilid 3). Jakarta: Direktorat Pembinaan Sekolah Menengah Kejuruan.
Cekdin, C. (2007). Sistem Tenaga Listrik. Yogyakarta: C.V. ANDI OFFSET.
Education and Science. (2016). Studi peningkatan keandalan sistem tenaga listrik dengan analisis kontingensi (N-1). Revista Cenic Ciencias Biológicas, 152(3), 28.
Efrizal. (2010). Studi aliran daya untuk menentukan lokasi optium pembangkit tenaga listrik menggunakan metoda Gauss-Seidel pada feeder 20 kV Gardu Induk Koto Panjang-Daludalu. Teknik Elektro Universitas Lancang Kuning.
Erwin, K. (2007). Kalkulus dan Geometri Analitis Jilid 2. Jakarta: Erlangga.
Fast-Decoupled, N. R. (2015). Studi aliran daya jaringan distribusi 20 kV di Bali menggunakan metode fast-decoupled. Jurnal Teknik Elektro Indonesia, 1(2), 45–56.
Gama, N., Lisi, F., Tuegeh, M., Nelwan, A. F., & Elektro-Ft, J. T. (2012). Aliran daya optimal pada sistem Minahasa. Jurnal Teknik Elektro dan Komputer, 1(3), 1–10.
Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (3rd ed.). Johns Hopkins University Press.
Khairina, N., & Harahap, M. K. (2018). Menjaga kerahasiaan data dengan steganografi kombinasi LSB-2 dengan LSB-3. SinkrOn - Jurnal & Penelitian Teknik Informatika, 3(1), 286–288.
Kreyszig, E. (1988). Advanced Engineering Mathematics (6th ed.). John Wiley & Sons.
Purcell, E. J., & Varberg, D. (1987). Kalkulus dan Geometri Analitis. Jakarta: Erlangga.
Sadiku, M. N. O. (2000). Numerical Techniques in Electromagnetics. Boca Raton, FL: CRC Press.
Saadat, H. (2010). Power System Analysis (3rd ed.). McGraw-Hill Education.
Patel, M. R. (2006). Wind and Solar Power Systems: Design, Analysis, and Operation (2nd ed.). CRC Press.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2025 Erwin E, Ilham Arifin, Septhia Eka Nurviranthy Panjaitan, Graceya Zagita Manik, Wiwi Marsela, Janter Ricardo Manurung

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.