ac

Twitter Sentiment Towards 2024 Jakarta Governor Candidates With Naïve Bayes Algorithm

Authors

  • Fikri Abei Informatics Engineering Study Program, Faculty of Engineering, Pelita Bangsa University, Indonesia
  • Asep Arwan Sulaeman Informatics Engineering Study Program, Faculty of Engineering, Pelita Bangsa University, Indonesia
  • Suprapto Informatics Engineering Study Program, Faculty of Engineering, Pelita Bangsa University, Indonesia

DOI:

10.47709/cnahpc.v7i1.5358

Keywords:

Sentiment Analysis, Twitter, Naïve Bayes Algorithm, Jakarta Governor Election 2024, Public Sentiment, Social Media, Text Classification

Dimension Badge Record



Abstract

This study aims to analyze public sentiment towards candidates for the 2024 Governor of DKI Jakarta through the Twitter platform, with a focus on classifying positive and negative sentiment. Along with the rapid development of social media, Twitter has become the main channel for people to voice political opinions. Sentiment analysis was conducted using the Naive Bayes algorithm to classify the sentiment of tweets collected through crawling techniques during the campaign period. The data used includes user tweets, with features such as frequently occurring words, popular hashtags, and discussion topics related to each gubernatorial candidate. The results showed that the Naive Bayes algorithm provided the best performance in classifying sentiment data in the period August 1 to December 26, 2024, with the highest accuracy rate reaching 75% at a data ratio of 90:10. This research also identified challenges in sentiment classification, such as the presence of new terms in test documents that are not recognized by the training model. The findings are expected to provide a clearer picture of public perceptions of gubernatorial candidates and contribute to the analysis of political sentiment on social media

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 35 times

References

Abidin, Z. (2024). Text Stemming and Lemmatization of Regional Languages in Indonesia: A Systematic Literature Review. Journal of Information Systems Engineering and Business Intelligence, 10(2), 217–231. https://doi.org/10.20473/jisebi.10.2.217-231

Athanasios. (2022). Ontology-Driven Data Cleaning Towards Lossless Data Compression. Studies in Health Technology and Informatics, 294, 421–422. https://doi.org/10.3233/SHTI220492

Azhar, R. (2022). Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes. Jurnal Sains Komputer & Informatika (J-SAKTI, 6(1), 267–281. https://doi.org/10.30645/j-sakti.v6i1.443

Bodell, M. H. (2022). From Documents to Data: A Framework for Total Corpus Quality. Socius, 8, 1–15. https://doi.org/10.1177/23780231221135523

Cassidy, B. (2022). Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. Medical Image Analysis, 75, 102305. https://doi.org/10.1016/j.media.2021.102305

Darwis, D. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744

Fan, C. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9(March), 1–17. https://doi.org/10.3389/fenrg.2021.652801

Febriyani, E. (2023). Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter. Jurnal Tekno Kompak, 17(1), 25. https://doi.org/10.33365/jtk.v17i1.2061

Gómez, C. S. F. K. J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181(2021), 526–534. https://doi.org/10.1016/j.procs.2021.01.199

Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241

Insan, M. K. (2023). ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES. Jurnal Mahasiswa Teknik Informatika, 7(1), 478–483. https://doi.org/10.36040/jati.v7i1.6373

Isnain, A. R. (2021). Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(1), 55–64. https://doi.org/10.22146/ijccs.60718

Jeng, C. V. J. J. M. J.-G. H. X. A. I. J.-H. (2021). Twitter Sentiment Analysis towards COVID-19 Vaccines in the Philippines Using Naïve Bayes. Information (Switzerland), 12(5), 1–16. https://doi.org/10.3390/info12050204

Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W., Hassoun, J., & Keutzer, K. (2022). Learned Token Pruning for Transformers. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22, 784–794. https://doi.org/10.1145/3534678.3539260

Lestari, S. (2021). Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes. Seminar Nasional Sistem Informasi Dan Manajemen Informatika, 7(1), 163–170. Retrieved from https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/23

Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Van Le, H., Tran, V. Q., … Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/4832864

Peretz. (2024). Naive Bayes classifier – An ensemble procedure for recall and precision enrichment. Engineering Applications of Artificial Intelligence, 136(1), 108972. https://doi.org/10.1016/j.engappai.2024.108972

Samsir, Irmayani, D., Edi, F., Harahap, J. M., Jupriaman, Rangkuti, R. K., … Watrianthos, R. (2021). Naives Bayes Algorithm for Twitter Sentiment Analysis. Journal of Physics: Conference Series, 1933(1), 1–6. https://doi.org/10.1088/1742-6596/1933/1/012019

Sarica, S., & Luo, J. (2021). Stopwords in technical language processing. PLoS ONE, 16(8), 1–13. https://doi.org/10.1371/journal.pone.0254937

Satria, A. R. (2020). Analisis Sentimen Ulasan Aplikasi Mobile menggunakan Algoritma Gabungan Naive Bayes dan C4.5 berbasis Normalisasi Kata Levenshtein Distance. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(11), 4154–4163. Retrieved from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8270

Selvi, B. (2021). Word Clouds in Grammar Production. Turkish Online Journal of English Language Teaching (TOJELT), 6(1), 44–57.

Sulaeman, A. A. (2024). Sentiment Analysis on Social Media X (Twitter) Against ChatGBT Using the K-Nearest Neighbors Algorithm. Brilliance: Research of Artificial Intelligence, 4(1), 265–275. https://doi.org/10.47709/brilliance.v4i1.4105

Sun, W., Yan, L., Chen, Z., Wang, S., Zhu, H., Ren, P., … Ren, Z. (2023). Learning to Tokenize for Generative Retrieval. NeurIPS Proceedings, 36, 1–17. Retrieved from http://arxiv.org/abs/2304.04171

Tijan, E. (2021). Digital transformation in the maritime transport sector. Technological Forecasting and Social Change, 170, 1–15. https://doi.org/10.1016/j.techfore.2021.120879

Viet, T. N. (2021). The naÏve bayes algorithm for learning data analytics. Indian Journal of Computer Science and Engineering, 12(4), 1038–1043. https://doi.org/10.21817/indjcse/2021/v12i4/211204191

Wornow, M. (2023). APLUS: A Python library for usefulness simulations of machine learning models in healthcare. Journal of Biomedical Informatics, 139(February), 1–12. https://doi.org/10.1016/j.jbi.2023.104319

Zhang, Y., Ling, H., Gao, J., Yin, K., Lafleche, J. F., Barriuso, A., … Fidler, S. (2021). DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10140–10150. https://doi.org/10.1109/CVPR46437.2021.01001

Downloads

ARTICLE Published HISTORY

Submitted Date: 2025-01-18
Accepted Date: 2025-01-18
Published Date: 2025-01-25

How to Cite

Abei, F. ., Sulaeman, A. A. ., & Suprapto, S. (2025). Twitter Sentiment Towards 2024 Jakarta Governor Candidates With Naïve Bayes Algorithm. Journal of Computer Networks, Architecture and High Performance Computing, 7(1), 265-277. https://doi.org/10.47709/cnahpc.v7i1.5358