Application of the Naive Bayes Method for Determining the Quality of Crude Palm Oil (CPO) at PTPN 2 Sawit Seberang
DOI:
10.47709/cnahpc.v6i4.4832Keywords:
Crude Palm Oil (CPO), Naive Bayes, Quality Classification, Data Mining, RapidMinerDimension Badge Record
Abstract
The palm oil industry is a vital pillar of Indonesia's economy, with Crude Palm Oil (CPO) as one of its leading commodities. The quality of CPO significantly impacts its competitiveness and market price internationally. PTPN 2 Sawit Seberang, as a prominent CPO processing company, faces challenges in consistently maintaining product quality. Key factors affecting CPO quality include moisture content, free fatty acids, and impurity levels, which are difficult to manage manually. To address these challenges, this study applies the Naive Bayes method as an efficient and fast classification tool for determining CPO quality. Naive Bayes was chosen for its simplicity in probability calculations and its ability to handle data classification with reasonable accuracy. The data used in this study include moisture content, free fatty acids, and impurity levels measured between February and June 2024. The data was split into training data (80%) and testing data (20%) and analyzed using RapidMiner software. The results show that the Naive Bayes method achieved an accuracy rate of 66.6%, with precision and recall values of 50% each. Although the accuracy could be improved, the application of this method has significantly enhanced the efficiency of determining CPO quality. Thus, the implementation of the Naive Bayes method in determining CPO quality at PTPN 2 Sawit Seberang is an effective step towards improving operational efficiency, classification accuracy, and decision-making quality related to product standards, ultimately supporting the company's competitiveness in the global market.
Downloads
Abstract viewed = 25 times
References
Alita, D., Sari, I., Isnain, A. R., & Styawati, S. (2021). Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Penerima Beasiswa. Jurnal Data Mining Dan Sistem Informasi, 2(1), 17–23.
Boy, A. F. (2020). Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara). Journal of Science and Social Research, 3(2), 78–85.
Efendi, R., Faurina, R., & Hamimmah, T. S. (2023). Implementasi Metode Naïve Bayes Pada Penentuan Mutu CPO (Crude Palm Oil). JSAI (Journal Scientific and ….
Furqan, M., & Fakhri, A. ab. N. (2024). Big data approach to sentiment analysis in machine learning-based microblogs: perspectives of religious moderation public policy in indonesia. In journal of applied engineering and technological science (vol. 5, issue 2).
Harahap, R. R., & Furqan, M. (2024). Sentiment Analysis towards the 2024 Vice Presidential Candidate Debate Using the Support Vector Machine Algorithm. Sinkron: jurnal dan penelitian teknik informatika, 8(3), 1783-1794.
Hussin, M., Ismail, Z., & Ilias, I. S. C. (2023). Bayesian Network Design for Crude Palm Oil (CPO) Price Prediction Driven by Fluctuation Patterns and Trends. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(2), 117–129. https://doi.org/10.37934/araset.31.2.117129
Manurung, M., Siti Dzulhijjah Nur Ammarah, N., & Nisa Sofia Amriza, R. (2022). The Application Naive Bayes Algorithm Determines Calorie Level Of The Mcdonald’s Menu. In JTSI (Vol. 3, Issue 2).
Nurhasanah, D., Lestari, D. A., & Simatupang, S. (2023a). Pemilihan Kualitas Produk Kelapa Sawit Menggunakan Metode Naive Bayes Di Labuhanbatu Selatan. Jurnal Teknisi.
Nurhasanah, D., Lestari, D. A., & Simatupang, S. (2023b). Pemilihan Kualitas Produk Kelapa Sawit Menggunakan Metode Naive Bayes Di Labuhanbatu Selatan. Jurnal Teknisi, 3(1), 24. https://doi.org/10.54314/teknisi.v3i1.1254
Pradipta, R., & Jayadi, R. (2022). The Sentiment Analysis Of The Indonesian Palm Oil Industry In Social Media Using A Machine Learning Model. Journal of Theoretical and Applied Information Technology, 30(12). www.jatit.org
Pulungan, R. W., Sriani, S., & Armansyah, A. (2024). Implementation of Naïve Bayes Method Diagnosing Diseases Nile Tilapia. Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 817–828. https://doi.org/10.47709/cnahpc.v6i2.3834
Puspitasari, N., Rosmasari, R., Pratama, F. W., & Sulastri, H. (2022). Quality Classification of Palm Oil Varieties Using Naive Bayes Classifier. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 13(1), 11–23. https://doi.org/10.31849/digitalzone.v13i1.9773
Sidik, A. (2024). Data Mining Menggunakan Metode Naive Bayes Untuk Menetapkan Standar Untuk Produk Minyak Sawit Mentah. EJECTS: Journal Computer, Technology, and ….
Suryani, D., Yulianti, A., Maghfiroh, E. L., & Alber, J. (2021). SISTEMASI: Jurnal Sistem Informasi Klasifikasi Kualitas Produk Kelapa Sawit Menggunakan Metode Naïve Bayes Quality Classification of Palm Oil Products Using Naïve Bayes Method. http://sistemasi.ftik.unisi.ac.id
Utami, R. Z., Suksmadana, M. B., & Kanata, B. (2018). Menentukan Luas Objek Citra Dengan Teknik Deteksi Tepi. 2(1), 11–17.
Widiastuti, N., Hermawan, A., & Avianto, D. (2023). IMPLEMENTASI METODE NAÏVE BAYES UNTUK KLASIFIKASI DATA BLOGGER. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(3), 985–994. https://doi.org/10.29100/jipi.v8i3.3713
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Dimas Raka Prananda, Mhd. Furqan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.