ac

Predictive Modeling of Preeclampsia Risk Using Random Forest Algorithm within a Machine Learning Framework

Authors

  • Harizahayu Politeknik Negeri Medan
  • Friendly Politeknik Negeri Medan
  • Bintarto Purwo Seputro Politeknik Negeri Medan
  • Benar Politeknik Negeri Medan
  • Koko Hermanto Universitas Teknologi Sumbawa

DOI:

10.47709/cnahpc.v6i4.4779

Keywords:

Preeclampsia, Random Forest algorithm, low Kappa, maternal morbidity and mortality, multivariate linear regression

Dimension Badge Record



Abstract

Preeclampsia is a serious pregnancy complication characterized by high blood pressure, potentially leading to organ damage, making early risk prediction crucial to reducing maternal morbidity and mortality. This study aims to develop a preeclampsia risk prediction model using medical and clinical data from 80 patients at Rumah Bersalin Sadan. The data include demographic profiles, blood pressure, weight, maternal age, preeclampsia history, body mass index, number of previous pregnancies, as well as genetic and environmental factors. The dependent variable is the risk of preeclampsia, either as a binary outcome (yes/no) or as a continuous risk score. The predictive model was built using multivariate linear regression and the Random Forest algorithm. The results showed that the Random Forest model achieved an accuracy of 65.22%, with an F-statistic of 7.345 and a very small p-value (1.908e-06), indicating that the model effectively explains data variability. However, the low Kappa value suggests room for improvement through feature refinement, hyperparameter tuning, or exploring other algorithms. Although these findings suggest that Random Forest is a promising method, further evaluation and model optimization are needed to enhance predictive performance and determine whether this method is the most suitable for the dataset used.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 20 times

References

Aminuddin, Sudarno, & Sugito. (2013). Pemilihan Model Regresi Linier MUultivariat Terbaik dengan Kriteria Mean Square Error. In JURNAL GAUSSIAN (Vol. 2, Issue 1). http://ejournal-s1.undip.ac.id/index.php/gaussian

Biau, G., & Scornet, E. (2016). A Random Forest Guided Tour. http://www.kaggle.com/c/dsg-hackathon

Budiarti, I., Rohaya, R., & Silaban, T. D. S. (2022). Faktor-Faktor yang Berhubungan dengan Kejadian Bayi Berat Lahir Rendah (BBLR) di Rumah Sakit Muhammadiyah Palembang Tahun 2020. Jurnal Ilmiah Universitas Batanghari Jambi, 22(1), 195. https://doi.org/10.33087/jiubj.v22i1.1927

Dai, B., Chen, R.-C., Zhu, S.-Z., & Zhang, W.-W. (2018). Using Random Forest Algorithm for Breast Cancer Diagnosis. 2018 International Symposium on Computer, Consumer and Control (IS3C), 449–452. https://doi.org/10.1109/IS3C.2018.00119

Gustri, Y., Januar Sitorus, R., & Utama, F. (2016). Determinants Preeclamsia in Pregnancy at RSUP DR. Mommadd Hoesin Palembang. Jurnal Ilmu Kesehatan Masyarakat, 7(3), 209–217. https://doi.org/10.26553/jikm.2016.7.3.209-217

Kencana Dewi, N. M. R. (2021). Pola Pengobatan Antihipertensi pada Pasien Preeklampsia di Rumah Sakit Harapan Bunda. Jurnal Sosial Sains, 1(7), 637–644. https://doi.org/10.59188/jurnalsosains.v1i7.143

Kusuma, M. D. H., & Hidayat, S. (2024). Penerapan Model Regresi Linier dalam Prediksi Harga Mobil Bekas di India dan Visualisasi dengan Menggunakan Power BI. Jurnal Indonesia?: Manajemen Informatika Dan Komunikasi, 5(2), 1097–1110. https://doi.org/10.35870/jimik.v5i2.629

Masruroh, N. (2021). Determinan Maternal Kejadia Preeklampsia Pada Ibu Hamil Trimester III di RS Prima Husada Sidoarjo. Jurnal Bidang Ilmu Kesehatan, 11(1), 94–104. https://doi.org/10.52643/jbik.v11i1.1072

Murniati, L., Taherong, F., & Syatirah, S. (2021). Manajemen Asuhan Kebidanan pada Bayi Baru Lahir dengan Asfiksia (Literatur Review). Jurnal Midwifery, 3(1), 32–41. https://doi.org/10.24252/jmw.v3i1.21028

Nurani, V., & Rahmawati, R. (2015). Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung. Jurnal Gaussian, 4(3), 697–704. http://ejournal-s1.undip.ac.id/index.php/gaussian

Ryan Dana, A., Valentino Kristananda, R., Bagas Satrio Wibowo, M., & Arman Prasetya, D. (2024). Perbandingan Algoritma Decision Tree dan Random Forest dengan Hyperparameter Tuning dalam Mendeteksi Penyakit Stroke. In Seminar Nasional Informatika Bela Negara (SANTIKA) (Vol. 4).

S, H. H. (2020). Estimasi Maksimum Likelihood Melalui Algoritma Ekspektasi Maksimasi Untuk Model Regresi Linear dengan Data Hilang. Jurnal Matematika, 10(2), 105. https://doi.org/10.24843/jmat.2020.v10.i02.p127

Sarica, A., Cerasa, A., & Quattrone, A. (2017). Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review. In Frontiers in Aging Neuroscience (Vol. 9, Issue OCT). Frontiers Media S.A. https://doi.org/10.3389/fnagi.2017.00329

Setyawati, A., Widiasih, R., & Ermiati, E. (2018). Faktor-Faktor yang Berhubungan dengan Kejadian Preeklampsia di Indonesia. Jurnal Perawat Indonesia, 2(1), 32. https://doi.org/10.32584/jpi.v2i1.38

Yuniarti, F., Wijayati, W., Ivantarina, D., Studi, P. D., & Karya Husada Kediri, S. (2018). Analisis Perilaku Kesehatan Dan Faktor Resiko Kejadian Preeklampsia Pada Ibu Hamil Di Poliklinik Obstetri Gynekologi RSUD Kabupaten Kediri. Journal of Issues in Midwifery, 1(3), 1–17.

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-10-05
Accepted Date: 2024-10-05
Published Date: 2024-10-17

How to Cite

Harizahayu, Friendly, Purwo Seputro , B., Benar, & Hermanto, K. (2024). Predictive Modeling of Preeclampsia Risk Using Random Forest Algorithm within a Machine Learning Framework. Journal of Computer Networks, Architecture and High Performance Computing, 6(4), 1843-1850. https://doi.org/10.47709/cnahpc.v6i4.4779