Predictive Modeling of Preeclampsia Risk Using Random Forest Algorithm within a Machine Learning Framework
DOI:
10.47709/cnahpc.v6i4.4779Keywords:
Preeclampsia, Random Forest algorithm, low Kappa, maternal morbidity and mortality, multivariate linear regressionDimension Badge Record
Abstract
Preeclampsia is a serious pregnancy complication characterized by high blood pressure, potentially leading to organ damage, making early risk prediction crucial to reducing maternal morbidity and mortality. This study aims to develop a preeclampsia risk prediction model using medical and clinical data from 80 patients at Rumah Bersalin Sadan. The data include demographic profiles, blood pressure, weight, maternal age, preeclampsia history, body mass index, number of previous pregnancies, as well as genetic and environmental factors. The dependent variable is the risk of preeclampsia, either as a binary outcome (yes/no) or as a continuous risk score. The predictive model was built using multivariate linear regression and the Random Forest algorithm. The results showed that the Random Forest model achieved an accuracy of 65.22%, with an F-statistic of 7.345 and a very small p-value (1.908e-06), indicating that the model effectively explains data variability. However, the low Kappa value suggests room for improvement through feature refinement, hyperparameter tuning, or exploring other algorithms. Although these findings suggest that Random Forest is a promising method, further evaluation and model optimization are needed to enhance predictive performance and determine whether this method is the most suitable for the dataset used.
Downloads
Abstract viewed = 20 times
References
Aminuddin, Sudarno, & Sugito. (2013). Pemilihan Model Regresi Linier MUultivariat Terbaik dengan Kriteria Mean Square Error. In JURNAL GAUSSIAN (Vol. 2, Issue 1). http://ejournal-s1.undip.ac.id/index.php/gaussian
Biau, G., & Scornet, E. (2016). A Random Forest Guided Tour. http://www.kaggle.com/c/dsg-hackathon
Budiarti, I., Rohaya, R., & Silaban, T. D. S. (2022). Faktor-Faktor yang Berhubungan dengan Kejadian Bayi Berat Lahir Rendah (BBLR) di Rumah Sakit Muhammadiyah Palembang Tahun 2020. Jurnal Ilmiah Universitas Batanghari Jambi, 22(1), 195. https://doi.org/10.33087/jiubj.v22i1.1927
Dai, B., Chen, R.-C., Zhu, S.-Z., & Zhang, W.-W. (2018). Using Random Forest Algorithm for Breast Cancer Diagnosis. 2018 International Symposium on Computer, Consumer and Control (IS3C), 449–452. https://doi.org/10.1109/IS3C.2018.00119
Gustri, Y., Januar Sitorus, R., & Utama, F. (2016). Determinants Preeclamsia in Pregnancy at RSUP DR. Mommadd Hoesin Palembang. Jurnal Ilmu Kesehatan Masyarakat, 7(3), 209–217. https://doi.org/10.26553/jikm.2016.7.3.209-217
Kencana Dewi, N. M. R. (2021). Pola Pengobatan Antihipertensi pada Pasien Preeklampsia di Rumah Sakit Harapan Bunda. Jurnal Sosial Sains, 1(7), 637–644. https://doi.org/10.59188/jurnalsosains.v1i7.143
Kusuma, M. D. H., & Hidayat, S. (2024). Penerapan Model Regresi Linier dalam Prediksi Harga Mobil Bekas di India dan Visualisasi dengan Menggunakan Power BI. Jurnal Indonesia?: Manajemen Informatika Dan Komunikasi, 5(2), 1097–1110. https://doi.org/10.35870/jimik.v5i2.629
Masruroh, N. (2021). Determinan Maternal Kejadia Preeklampsia Pada Ibu Hamil Trimester III di RS Prima Husada Sidoarjo. Jurnal Bidang Ilmu Kesehatan, 11(1), 94–104. https://doi.org/10.52643/jbik.v11i1.1072
Murniati, L., Taherong, F., & Syatirah, S. (2021). Manajemen Asuhan Kebidanan pada Bayi Baru Lahir dengan Asfiksia (Literatur Review). Jurnal Midwifery, 3(1), 32–41. https://doi.org/10.24252/jmw.v3i1.21028
Nurani, V., & Rahmawati, R. (2015). Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung. Jurnal Gaussian, 4(3), 697–704. http://ejournal-s1.undip.ac.id/index.php/gaussian
Ryan Dana, A., Valentino Kristananda, R., Bagas Satrio Wibowo, M., & Arman Prasetya, D. (2024). Perbandingan Algoritma Decision Tree dan Random Forest dengan Hyperparameter Tuning dalam Mendeteksi Penyakit Stroke. In Seminar Nasional Informatika Bela Negara (SANTIKA) (Vol. 4).
S, H. H. (2020). Estimasi Maksimum Likelihood Melalui Algoritma Ekspektasi Maksimasi Untuk Model Regresi Linear dengan Data Hilang. Jurnal Matematika, 10(2), 105. https://doi.org/10.24843/jmat.2020.v10.i02.p127
Sarica, A., Cerasa, A., & Quattrone, A. (2017). Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review. In Frontiers in Aging Neuroscience (Vol. 9, Issue OCT). Frontiers Media S.A. https://doi.org/10.3389/fnagi.2017.00329
Setyawati, A., Widiasih, R., & Ermiati, E. (2018). Faktor-Faktor yang Berhubungan dengan Kejadian Preeklampsia di Indonesia. Jurnal Perawat Indonesia, 2(1), 32. https://doi.org/10.32584/jpi.v2i1.38
Yuniarti, F., Wijayati, W., Ivantarina, D., Studi, P. D., & Karya Husada Kediri, S. (2018). Analisis Perilaku Kesehatan Dan Faktor Resiko Kejadian Preeklampsia Pada Ibu Hamil Di Poliklinik Obstetri Gynekologi RSUD Kabupaten Kediri. Journal of Issues in Midwifery, 1(3), 1–17.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Harizahayu, Friendly, Bintarto Purwo Seputro , Benar, Koko Hermanto
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.