ac

Sentiment Analysis of Dune: Part Two Movie Reviews Using the Naive Bayes Method

Authors

  • Diyan Arum Maheswari Universitas Pelita Bangsa, Bekasi, Indonesia
  • Ahmad Turmudi Zy Universitas Pelita Bangsa, Bekasi, Indonesia
  • Irfan Afriantoro Universitas Pelita Bangsa, Bekasi, Indonesia

DOI:

10.47709/cnahpc.v6i4.4604

Keywords:

Sentimen Analysis, Naive Bayes, Movie Review, Dune: Part Two, IMDB, TF-IDF

Dimension Badge Record



Abstract

Research on films is fascinating because of the profound changes that the development of information and communication technology has brought about in our interactions with and consumption of media content. This study performs sentiment analysis on "Dune: Part Two" movie reviews using the Naïve Bayes method. Review data was collected from IMDb and then processed through several stages such as preprocessing, feature selection with TF-IDF, data splitting, and data mining and evaluation. Naïve Bayes was chosen for its simplicity and ability to handle large datasets effectively. The test results showed a high accuracy rate of 95%, indicating that this model can identify positive, negative, and neutral sentiments well. The use of TF-IDF in feature selection allowed the model to focus on important words, enhancing its sentiment classification ability. This research can provide insights into audience perceptions of the film "Dune: Part Two," which is beneficial for the film industry.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 58 times

References

Afriansyah, M., Saputra, J., Sa’adati, Y., & Valian Yoga Pudya Ardhana. (2023). Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB. Bulletin of Computer Science Research, 3(3), 242–249. https://doi.org/10.47065/bulletincsr.v3i3.251

Anuar, F., Putra, R., Firman Fadilah, F., Enri, U., & Karawang, U. S. (2023). ANALISIS SENTIMEN ULASAN FILM OPPENHEIMER PADA SITUS IMDB MENGGUNAKAN METODE NAIVE BAYES.

Ferryawan, R., Kusrini, K., & Wibowo, F. W. (2020). Analisis Sentimen Wisata Jawa Tengah Menggunakan Na?ve Bayes. Jurnal Informa?: Jurnal Penelitian Dan Pengabdian Masyarakat, 5(3), 55–60. https://doi.org/10.46808/informa.v5i3.146

Guterres, A., Gunawan, & Santoso, J. (2019). Stemming Bahasa Tetun Menggunakan Pendekatan Rule Based. Teknika, 8(2), 142–147. https://doi.org/10.34148/teknika.v8i2.224

Kelvin, K., Banjarnahor, J., -, E. I., & NK Nababan, M. (2022). Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM). Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 5(2), 47–52. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365

Khotimah, A. C., & Utami, E. (2022). COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT. Jurnal Teknik Informatika (JUTIF), 3(3). https://doi.org/10.20884/1.jutif.2022.3.3.254

Kritikus Nilai Dune: Part Two 95 Persen, Rekor Baru Denis Villeneuve. (2024). https://www.cnnindonesia.com/hiburan/20240301191201-220-1069435/kritikus-nilai-dune-part-two-95-persen-rekor-baru-denis-villeneuve

Kurniawan, A., & Adinugroho, S. (2019). Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features (Vol. 3, Issue 9). http://j-ptiik.ub.ac.id

Made, I., Adnyana, B., Jln, S. B., & Puputan, R. (2019). Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa.

Makmun, M., Zy, A. T., & Arwan, A. (2024). Analisis Sentimen Media Sosial Twitter Terhadap Calon Presiden RI Tahun 2024 Menggunakan Klasifikasi Algoritma Naïve Bayes. https://doi.org/10.47065/josyc.v5i3.5210

Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, & Andreas Nugroho Sihananto. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem?: Jurnal Informatika Dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112

Muhammad Thaariq, Dade Nurjanah, & Hani Nurrahmi. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier Dengan Fitur TF-IDF.

Nur Rozi, F., & Harini Sulistyawati, D. (2019). KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF (Vol. 15, Issue 1).

Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma

Afriansyah, M., Saputra, J., Sa’adati, Y., & Valian Yoga Pudya Ardhana. (2023). Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB. Bulletin of Computer Science Research, 3(3), 242–249. https://doi.org/10.47065/bulletincsr.v3i3.251

Anuar, F., Putra, R., Firman Fadilah, F., Enri, U., & Karawang, U. S. (2023). ANALISIS SENTIMEN ULASAN FILM OPPENHEIMER PADA SITUS IMDB MENGGUNAKAN METODE NAIVE BAYES.

Ferryawan, R., Kusrini, K., & Wibowo, F. W. (2020). Analisis Sentimen Wisata Jawa Tengah Menggunakan Na?ve Bayes. Jurnal Informa?: Jurnal Penelitian Dan Pengabdian Masyarakat, 5(3), 55–60. https://doi.org/10.46808/informa.v5i3.146

Guterres, A., Gunawan, & Santoso, J. (2019). Stemming Bahasa Tetun Menggunakan Pendekatan Rule Based. Teknika, 8(2), 142–147. https://doi.org/10.34148/teknika.v8i2.224

Kelvin, K., Banjarnahor, J., -, E. I., & NK Nababan, M. (2022). Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM). Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 5(2), 47–52. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365

Khotimah, A. C., & Utami, E. (2022). COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT. Jurnal Teknik Informatika (JUTIF), 3(3). https://doi.org/10.20884/1.jutif.2022.3.3.254

Kritikus Nilai Dune: Part Two 95 Persen, Rekor Baru Denis Villeneuve. (2024). https://www.cnnindonesia.com/hiburan/20240301191201-220-1069435/kritikus-nilai-dune-part-two-95-persen-rekor-baru-denis-villeneuve

Kurniawan, A., & Adinugroho, S. (2019). Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features (Vol. 3, Issue 9). http://j-ptiik.ub.ac.id

Made, I., Adnyana, B., Jln, S. B., & Puputan, R. (2019). Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa.

Makmun, M., Zy, A. T., & Arwan, A. (2024). Analisis Sentimen Media Sosial Twitter Terhadap Calon Presiden RI Tahun 2024 Menggunakan Klasifikasi Algoritma Naïve Bayes. https://doi.org/10.47065/josyc.v5i3.5210

Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, & Andreas Nugroho Sihananto. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem?: Jurnal Informatika Dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112

Muhammad Thaariq, Dade Nurjanah, & Hani Nurrahmi. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier Dengan Fitur TF-IDF.

Nur Rozi, F., & Harini Sulistyawati, D. (2019). KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF (Vol. 15, Issue 1).

Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085

Rizkina, N. Q., & Hasan, F. N. (2023). Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes. Journal of Information System Research (JOSH), 4(4), 1136–1144. https://doi.org/10.47065/josh.v4i4.3803

Salam, A., Zeniarja, J., Septiyan, R., & Khasanah, U. (2018). ANALISIS SENTIMEN DATA KOMENTAR SOSIAL MEDIA FACEBOOK DENGAN K-NEAREST NEIGHBOR (STUDI KASUS PADA AKUN JASA EKSPEDISI BARANG J&T EKSPRESS INDONESIA).

Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020). PRISMA, Prosiding Seminar Nasional Matematika Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5. 3, 64–71. https://journal.unnes.ac.id/sju/index.php/prisma/

Suryati, E., Ari Aldino, A., Penulis Korespondensi, N., & Suryati Submitted, E. (2023). Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM). 4(1), 96–106. https://doi.org/10.33365/jtsi.v4i1.2445

Turmudi Zy, A., Nugroho, A., Rivaldi, A., & Afriantoro, I. (2022). Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes. Jurnal Teknologi Informatika Dan Komputer, 8(2), 202–213. https://doi.org/10.37012/jtik.v8i2.1240

Yoshua, I., Bunyamin, H., & Si, S. (2021). Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering (Vol. 3).

Yutika, C. H., Adiwijaya, A., & Faraby, S. Al. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 422. https://doi.org/10.30865/mib.v5i2.2845

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-08-29
Accepted Date: 2024-08-29
Published Date: 2024-10-11

How to Cite

Maheswari, D. A., Zy, A. T. ., & Afriantoro, I. . (2024). Sentiment Analysis of Dune: Part Two Movie Reviews Using the Naive Bayes Method. Journal of Computer Networks, Architecture and High Performance Computing, 6(4), 1749-1758. https://doi.org/10.47709/cnahpc.v6i4.4604