Sentiment Analysis of Dune: Part Two Movie Reviews Using the Naive Bayes Method
DOI:
10.47709/cnahpc.v6i4.4604Keywords:
Sentimen Analysis, Naive Bayes, Movie Review, Dune: Part Two, IMDB, TF-IDFDimension Badge Record
Abstract
Research on films is fascinating because of the profound changes that the development of information and communication technology has brought about in our interactions with and consumption of media content. This study performs sentiment analysis on "Dune: Part Two" movie reviews using the Naïve Bayes method. Review data was collected from IMDb and then processed through several stages such as preprocessing, feature selection with TF-IDF, data splitting, and data mining and evaluation. Naïve Bayes was chosen for its simplicity and ability to handle large datasets effectively. The test results showed a high accuracy rate of 95%, indicating that this model can identify positive, negative, and neutral sentiments well. The use of TF-IDF in feature selection allowed the model to focus on important words, enhancing its sentiment classification ability. This research can provide insights into audience perceptions of the film "Dune: Part Two," which is beneficial for the film industry.
Downloads
Abstract viewed = 58 times
References
Afriansyah, M., Saputra, J., Sa’adati, Y., & Valian Yoga Pudya Ardhana. (2023). Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB. Bulletin of Computer Science Research, 3(3), 242–249. https://doi.org/10.47065/bulletincsr.v3i3.251
Anuar, F., Putra, R., Firman Fadilah, F., Enri, U., & Karawang, U. S. (2023). ANALISIS SENTIMEN ULASAN FILM OPPENHEIMER PADA SITUS IMDB MENGGUNAKAN METODE NAIVE BAYES.
Ferryawan, R., Kusrini, K., & Wibowo, F. W. (2020). Analisis Sentimen Wisata Jawa Tengah Menggunakan Na?ve Bayes. Jurnal Informa?: Jurnal Penelitian Dan Pengabdian Masyarakat, 5(3), 55–60. https://doi.org/10.46808/informa.v5i3.146
Guterres, A., Gunawan, & Santoso, J. (2019). Stemming Bahasa Tetun Menggunakan Pendekatan Rule Based. Teknika, 8(2), 142–147. https://doi.org/10.34148/teknika.v8i2.224
Kelvin, K., Banjarnahor, J., -, E. I., & NK Nababan, M. (2022). Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM). Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 5(2), 47–52. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365
Khotimah, A. C., & Utami, E. (2022). COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT. Jurnal Teknik Informatika (JUTIF), 3(3). https://doi.org/10.20884/1.jutif.2022.3.3.254
Kritikus Nilai Dune: Part Two 95 Persen, Rekor Baru Denis Villeneuve. (2024). https://www.cnnindonesia.com/hiburan/20240301191201-220-1069435/kritikus-nilai-dune-part-two-95-persen-rekor-baru-denis-villeneuve
Kurniawan, A., & Adinugroho, S. (2019). Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features (Vol. 3, Issue 9). http://j-ptiik.ub.ac.id
Made, I., Adnyana, B., Jln, S. B., & Puputan, R. (2019). Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa.
Makmun, M., Zy, A. T., & Arwan, A. (2024). Analisis Sentimen Media Sosial Twitter Terhadap Calon Presiden RI Tahun 2024 Menggunakan Klasifikasi Algoritma Naïve Bayes. https://doi.org/10.47065/josyc.v5i3.5210
Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, & Andreas Nugroho Sihananto. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem?: Jurnal Informatika Dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112
Muhammad Thaariq, Dade Nurjanah, & Hani Nurrahmi. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier Dengan Fitur TF-IDF.
Nur Rozi, F., & Harini Sulistyawati, D. (2019). KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF (Vol. 15, Issue 1).
Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma
Afriansyah, M., Saputra, J., Sa’adati, Y., & Valian Yoga Pudya Ardhana. (2023). Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB. Bulletin of Computer Science Research, 3(3), 242–249. https://doi.org/10.47065/bulletincsr.v3i3.251
Anuar, F., Putra, R., Firman Fadilah, F., Enri, U., & Karawang, U. S. (2023). ANALISIS SENTIMEN ULASAN FILM OPPENHEIMER PADA SITUS IMDB MENGGUNAKAN METODE NAIVE BAYES.
Ferryawan, R., Kusrini, K., & Wibowo, F. W. (2020). Analisis Sentimen Wisata Jawa Tengah Menggunakan Na?ve Bayes. Jurnal Informa?: Jurnal Penelitian Dan Pengabdian Masyarakat, 5(3), 55–60. https://doi.org/10.46808/informa.v5i3.146
Guterres, A., Gunawan, & Santoso, J. (2019). Stemming Bahasa Tetun Menggunakan Pendekatan Rule Based. Teknika, 8(2), 142–147. https://doi.org/10.34148/teknika.v8i2.224
Kelvin, K., Banjarnahor, J., -, E. I., & NK Nababan, M. (2022). Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM). Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 5(2), 47–52. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365
Khotimah, A. C., & Utami, E. (2022). COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT. Jurnal Teknik Informatika (JUTIF), 3(3). https://doi.org/10.20884/1.jutif.2022.3.3.254
Kritikus Nilai Dune: Part Two 95 Persen, Rekor Baru Denis Villeneuve. (2024). https://www.cnnindonesia.com/hiburan/20240301191201-220-1069435/kritikus-nilai-dune-part-two-95-persen-rekor-baru-denis-villeneuve
Kurniawan, A., & Adinugroho, S. (2019). Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features (Vol. 3, Issue 9). http://j-ptiik.ub.ac.id
Made, I., Adnyana, B., Jln, S. B., & Puputan, R. (2019). Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa.
Makmun, M., Zy, A. T., & Arwan, A. (2024). Analisis Sentimen Media Sosial Twitter Terhadap Calon Presiden RI Tahun 2024 Menggunakan Klasifikasi Algoritma Naïve Bayes. https://doi.org/10.47065/josyc.v5i3.5210
Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, & Andreas Nugroho Sihananto. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem?: Jurnal Informatika Dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112
Muhammad Thaariq, Dade Nurjanah, & Hani Nurrahmi. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier Dengan Fitur TF-IDF.
Nur Rozi, F., & Harini Sulistyawati, D. (2019). KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF (Vol. 15, Issue 1).
Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085
Rizkina, N. Q., & Hasan, F. N. (2023). Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes. Journal of Information System Research (JOSH), 4(4), 1136–1144. https://doi.org/10.47065/josh.v4i4.3803
Salam, A., Zeniarja, J., Septiyan, R., & Khasanah, U. (2018). ANALISIS SENTIMEN DATA KOMENTAR SOSIAL MEDIA FACEBOOK DENGAN K-NEAREST NEIGHBOR (STUDI KASUS PADA AKUN JASA EKSPEDISI BARANG J&T EKSPRESS INDONESIA).
Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020). PRISMA, Prosiding Seminar Nasional Matematika Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5. 3, 64–71. https://journal.unnes.ac.id/sju/index.php/prisma/
Suryati, E., Ari Aldino, A., Penulis Korespondensi, N., & Suryati Submitted, E. (2023). Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM). 4(1), 96–106. https://doi.org/10.33365/jtsi.v4i1.2445
Turmudi Zy, A., Nugroho, A., Rivaldi, A., & Afriantoro, I. (2022). Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes. Jurnal Teknologi Informatika Dan Komputer, 8(2), 202–213. https://doi.org/10.37012/jtik.v8i2.1240
Yoshua, I., Bunyamin, H., & Si, S. (2021). Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering (Vol. 3).
Yutika, C. H., Adiwijaya, A., & Faraby, S. Al. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 422. https://doi.org/10.30865/mib.v5i2.2845
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Diyan Arum, Turmudi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.