ac

Increasing Student Interest in Learning through the Implementation of the K-Nearest Neighbor Algorithm in Classifying Learning Preferences at SMAN 1 Kraksaan

Authors

  • Moh. Jasri Universitas Nurul Jadid
  • Ilham Rahmadan Universitas Nurul Jadid
  • Wali Ja'far Shudiq Universitas Nurul Jadid

DOI:

10.47709/cnahpc.v6i4.4526

Keywords:

K-Nearest Neighbor, learning preferences, learning interests, personalization of education, machine learning in education

Dimension Badge Record



Abstract

This research examines the effectiveness of implementing the K-Nearest Neighbor (KNN) algorithm in classifying student learning preferences and its impact on increasing interest in learning at SMAN 1 Kraksaan. The main aim of the research is to optimize learning methods through personalization based on individual student preferences. The study involved 560 students of SMAN 1 Kraksaan, with data including variables of age, gender, academic grades, daily study time, attendance and participation in class. The KNN algorithm is used to classify students' learning preferences into visual, auditory, kinesthetic, and reading/writing categories. The learning method is then adjusted based on the results of this classification. The results show that the KNN algorithm is able to classify student learning preferences with an accuracy of 80.36%. After implementing personalized learning methods, there was a significant increase in students' interest in learning, with an average increase of 1.76 points on a 10-point scale. Paired t-test analysis showed a statistically significant difference between interest in learning before and after intervention (p < 0.0001). This research concludes that the implementation of the KNN algorithm in classifying learning preferences can help increase students' interest in learning effectively. These findings emphasize the importance of personalization in education and demonstrate the potential of integrating machine learning in the pedagogical process to improve learning outcomes.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 27 times

References

Hidayat, T., Suyanto, S., & Rosyid, A. (2022). Klasifikasi Preferensi Belajar Menggunakan Algoritma Random Forest. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 8(1), 78–87.

Jasri, M., Ghozali, A. F., & Sukron. (2024). Klasifikasi Nilai Pengurus Teladan Pondok Pesantren Nurul Jadid Menggunakan Metode K-Nearest Neighbor (KNN). SMARTICS Journal, 10(1). https://doi.org/10.21067/smartics.v10i1.9913

Jasri, M., Hasyim, F., & Azizah, N. (2023). Analisis Analisis Dan Perancangan Sistem Kredit Point Menggunakan Metode Ooad (Study Kasus Ma Dan Mts Taklimus Shibyan). SMARTICS Journal, 9(1), 29–41.

Jasri, M., Karim, A., & Nabil, M. (2023). APLIKASI SISTEM MANAJEMEN GUDANG SPAREPART TRUK DENGAN TEKNOLOGI OCR MENGGUNAKAN FRAMEWORK LARAVEL. SENTRI: Jurnal Riset Ilmiah, 2(11), 4988–4996.

Jasri, M., Wijaya, A., & Sunggara, M. R. (2022). Penerapan Data Mining untuk Klasifikasi Penyakit Demam Berdarah Dengue (DBD) dengan Metode Naï ve Bayes (Studi Kasus Puskesmas Taman Krocok). SMARTICS Journal, 8(1).

Jasri, M., Zahra, W. A., Haninah, S., Kamaliah, S., Maulidah, F., Maslikha, M., Mutmainnah, L., & Naqsabandiyah, D. S. (2023). PKM Pelatihan Penggunaan Aplikasi Pedatren untuk Menunjang Kinerja Wali Asuh di Pondok Pesantren Nurul Jadid. GUYUB: Journal of Community Engagement, 4(1), 94–107.

Kusumadewi, S., Hartati, S., & Harjoko, A. (2023). Etika dan Privasi dalam Penerapan Kecerdasan Buatan di Bidang Pendidikan. Jurnal Ilmu Komputer Dan Informatika, 6(1), 45–58.

Nugroho, Y. S., Anifah, L., & Sulistiyo, E. (2022). Pengembangan Media Pembelajaran Adaptif Berbasis Kecerdasan Buatan untuk Meningkatkan Minat Belajar Siswa. Jurnal Inovasi Teknologi Pendidikan, 9(1), 12–25.

Pratama, A., Suyanto, M., & Nurochman, A. (2019). Penerapan Algoritma Decision Tree untuk Klasifikasi Gaya Belajar Siswa. Jurnal Informatika, 6(2), 114–123.

Pratama, R. A., Wahyudi, M., & Prasetyo, A. K. (2021). Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Prestasi Akademik Siswa. Jurnal Teknik Informatika Dan Sistem Informasi, 7(2), 355–366.

Putri, R. A., Hakim, L., & Yudhistira, N. (2021). Prediksi Minat Belajar Siswa Menggunakan Algoritma Support Vector Machine. Jurnal Pendidikan dan Pembelajaran, 28(1), 45-54. Nugroho. Y. S., Kusrini, K., & Arief, M. R., 8(2), 141–150.

Ratnasari, D., & Sucipto, A. (2021). Analisis Minat dan Motivasi Belajar Siswa terhadap Prestasi Belajar Matematika. Jurnal Cendekia: Jurnal Pendidikan Matematika, 5(1), 288–299.

Saputra, D. R. E., Jasri, M., Syaiful, S., & Bambang, B. (2023). Analisa dan Perancangan Aplikasi Laporan Kegiatan Afkire PT. East Hope Bimo Menggunakan Metode OOAD. COREAI: Jurnal Kecerdasan Buatan, Komputasi Dan Teknologi Informasi, 4(1), 54–61.

Widodo, A., Indraswati, D., & Sobri, M. (2020). Analisis Gaya Belajar dan Pembelajaran di Sekolah Dasar. Jurnal Ilmiah KONTEKSTUAL, 2(1), 28–34.

Widodo, S., Purnomo, E., & Santoso, H. (2020). Implementasi Metode Naive {B}ayes dalam Identifikasi Preferensi Belajar Mahasiswa. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(3), 601–610.

Zhang, S., Li, X., Zong, M., Zhu, X., & Wang, R. (2018). Efficient kNN classification with different nu

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-08-13
Accepted Date: 2024-08-16
Published Date: 2024-10-11

How to Cite

Jasri , M. ., Rahmadan, I. ., & Shudiq, W. J. . (2024). Increasing Student Interest in Learning through the Implementation of the K-Nearest Neighbor Algorithm in Classifying Learning Preferences at SMAN 1 Kraksaan. Journal of Computer Networks, Architecture and High Performance Computing, 6(4), 1851-1862. https://doi.org/10.47709/cnahpc.v6i4.4526