Naïve Bayes-based Student Graduation Prediction Model: Effectiveness and Implementation to Improve Timely Graduation
DOI:
10.47709/cnahpc.v6i3.4408Keywords:
Naïve Bayes, Prediction, Timely GraduationDimension Badge Record
Abstract
Studies in an educational institution, when the lack of timely graduation of students in each batch and the number of students in each batch, causes an imbalance between incoming students and outgoing students and causes a decrease in accreditation from the campus, this should not continue to happen, the solution to dealing with this problem as an early detection of students who graduate on time is to predict the length of the student study period they have. Therefore, researchers will discuss the design of a prediction system for graduating on time using the Naïve Bayes method, to predict student graduation so that there is no imbalance of incoming and outgoing students. The construction of this system also uses the Naïve Bayes method and the CRISP-DM (Cross Industry Standard Process Data Mining) development method. In this case study, the Naïve Bayes method predicts data into 2, namely 1 (graduated on time) and 0 (did not graduate on time) by labeling the data used. In this model using 3247 data with the selection of features, namely semester achievement index 1 (ips1), ips2, ips3, ips4, ips5, semester credit units1 (credits1), credits2, credits3, credits4, credits5, semester credit units not passed 1 (skstidaklulus1), skstidaklulus2, skstidaklulus3, skstidaklulus4, skstidaklulus5 and labels. Using these feature variables results in model performance with 80% accuracy, with 80% accuracy it can be said that the model works well.
Downloads
Abstract viewed = 98 times
References
Amalia, R. 2020. "Penerapan data mining untuk memprediksi hasil kelulusan siswa menggunakan metode naïve bayes". Jurnal Informatika dan Sistem Informasi, 6(1), 33–42.
Asana IMDP, Ganda Wiguna IKA, Atmaja KJ, Sanjaya IPA. FP-Growth Implementation in Frequent Itemset Mining for Consumer Shopping Pattern Analysis Application. Mantik [Internet]. 2020Nov.24 [cited 2023Apr.5];4(3):2063-70. Available from: https://iocscience.org/ejournal/index.php/mantik/article/view/1075
Asri, A., Arifin, A., dkk. 2022. "2775-801X (Online)", 2(1), 21–26.
Chohan, S., Nugroho, A., dkk. 2020. "Analisis Sentimen Aplikasi Duolingo Menggunakan Metode Naïve Bayes dan Synthetic Minority Over Sampling Technique", 22(2).
Fatah, R. 2018. "Perancangan Model Prediksi Kelulusan Mahasiswa Tepat Waktu pada UIN Raden Fatah", 4, 49–62.
Firdaus, A. F., Saedudin, R., dkk. 2021. "Implementasi Metode Klasifikasi Naive Bayes Implementation of Naive Bayes Classification Method in Predicting", 8(5), 9274–9279.
Ganda, L. H., Bunyamin, H., dkk. 2021. "Penggunaan Augmentasi Data pada Klasifikasi Jenis Kanker Payudara dengan Model Resnet-34", 3, 187–193.
Gustanto, A. D., Rismawan, T., dkk. 2022. "Implementasi Metode Naïve Bayes dan Certainty Factor dalam Diagnosis Hama dan Penyakit Tanaman Anggrek Bulan Berbasis Android". Justin (Jurnal Sistem dan Teknologi Informasi), 10(1), 180–188. https://doi.org/10.26418/justin.v10i1.51983.
Heriyanto, E., Kumalasarinurnawati, E., dkk. 2018. "Skripsi Implementasi Kecerdasan Buatan Pada Game Menggunakan Metode Pathfinding Dengan Game Engine Unity3D". Jurnal SCRIPT, 5(2), 56–62. diambil dari https://ejournal.akprind.ac.id/index.php/script/article/view/641.
Latifah, R., Wulandari, E. S., dkk. 2019. "Model Decision Tree Untuk Prediksi Jadwal Kerja Menggunakan Scikit-Learn". Jurnal Universitas Muhammadiyah Jakarta, 1–6. diambil dari https://jurnal.umj.ac.id/index.php/semnastek/article/download/5239/3517.
Mardiana, L., Kusnandar, D., dkk. 2022. "ANALISIS DISKRIMINAN DENGAN K FOLD CROSS VALIDATION UNTUK KLASIFIKASI KUALITAS AIR DI KOTA PONTIANAK", 11(1), 97–102.
Marudut, V., Siregar, M., dkk. 2018. "Menurut Turangan et . al ( 2017 ) insentif merupakan salah satu jenis penghargaan yang dikaitkan dengan prestasi kerja . Semakin tinggi prestasi kerja semakin besar pula insentif yang diterima . Sudah menjadi kebiasaan bahwa setiap perusahaan harus meneta", 7, 87–94.
Mulyadi, C., dan Sugiarto, L. 2021. "Penggunaan algoritma naïve bayes untuk prediksi ketepatan waktu lulus mahasiswa diploma 3 STMIK Cipta Darma Surakarta". Teknomatika, 11(01), 21–30. diambil dari http://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/512.
Prabowo, W. A., dan Wiguna, C. 2021. "Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM". Jurnal Media Informatika Budidarma, 5(1), 149. https://doi.org/10.30865/mib.v5i1.2604.
Prasanta, M. R., Pranata, M. Y., dkk. 2022. "Rancang Bangun Quadcopter Drone Untuk Deteksi Api Menggunakan YOLOv4". Cyclotron, 5(1). https://doi.org/10.30651/cl.v5i1.10013.
Pratiwi, B. P., Handayani, A. S., dkk. 2021. "Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix". Jurnal Informatika Upgris, 6(2), 66–75. https://doi.org/10.26877/jiu.v6i2.6552.
Putra, D. A., dan Kamayani, M. 2020. "Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Naive Bayes di Program Studi Teknik Informatika UHAMKA", 5(2502), 34–40. https://doi.org/10.22236/teknoka.v5i.331.
Retnoningsih, E., dan Pramudita, R. 2020. "Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python". Bina Insani Ict Journal, 7(2), 156. https://doi.org/10.51211/biict.v7i2.1422.
Saluky, S. 2018. "Tinjauan Artificial Intelligence untuk Smart Government". ITEJ (Information Technology Engineering Journals), 3(1), 8–16. https://doi.org/10.24235/itej.v3i1.22.
Setiyani, L., Wahidin, M., dkk. 2020. "Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review". Faktor Exacta, 13(1), 35. https://doi.org/10.30998/faktorexacta.v13i1.5548.
Sholeh, M., Rachmawati, R. Y., dkk. 2022. "Penerapan Regresi Linear Ganda Untuk Memprediksi Hasil Nilai Kuesioner Mahasiswa Dengan Menggunakan Python", 11(1), 13–24.
Siswanto, E. 2019. "Optimasi Metode Naïve Bayes Dalam Memprediksi Tingkat Kelulusan Mahasiswa Stekom Semarang", 6(1), 1–6.
Sukerta Wijaya, I. W., Harjumawan Wiratmaja KS., I. G., dkk. 2021. "Program Menghitung Banyak Bata pada Ruangan Menggunakan Bahasa Python". TIERS Information Technology Journal, 2(1). https://doi.org/10.38043/tiers.v2i1.2840.
Utami dan Hidayat 2018. "Bab Ii Landasan Teori". Journal of Chemical Information and Modeling, 53(9), 8–24.
Witten IH, Frank E, Hall MA. (2016). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, USA.
Yoshua, I. A., Pragantha, J., dkk. 2020. "Aplikasi Pengukur Kelayakan Tempat Tinggal Dengan Menggunakan Metode Naive Bayes". Jurnal Ilmu Komputer dan Sistem Informasi, 8(1), 79–83.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Ketut Jaya Atmaja, I Putu Yoga Indrawan, I Made Dwi Putra Asana, I Kadek Wawan, Ayu Gde Chrisna Udayanie
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.