Product Layout Analysis Based on Consumer Purchasing Patterns Using Apriori Algorithm
DOI:
10.47709/cnahpc.v6i3.4400Keywords:
Apriori algorithm, Data mining, Association analysis, High utility itemset miningDimension Badge Record
Abstract
In every self-service store, it is certain to have a sales transaction data, where the data will continue to grow every day. But in self-service stores the data is only a record of sales at the store. Whereas transaction data can be used as information on how consumer purchasing patterns when shopping at the store, but not all supermarkets know this. So this research aims to find information on these purchasing patterns, where to do this research using the apriori algorithm which is part of the association technique which is also part of data mining, where in its application it will calculate the support value, confindence value and will be tested using the lift ratio. And after the calculation is carried out, optimization will be carried out using the high utility itemset mining variable which will calculate the highest profit value on the product, so that based on the calculation, the final result is obtained with a support value of 85%, a confidence value of 86%, a lift ratio test of 1.01 and the high utility gets the highest result of Rp. 567,000.
Downloads
Abstract viewed = 164 times
References
Andini, Y., Hardinata, J. T., Purba, Y. P., Studi, P., Informasi, S., Utara, S., & Apriori, M. (2022). PENERAPAN DATA MINING TERHADAP TATA LETAK BUKU. XI(1), 9–15.
Asana, I. M. D. P., Sudipa, I. G. I., Mayun, A. A. T. W., Meinarni, N. P. S., & Waas, D. V. (2022). Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID. INFORMAL: Informatics Journal, 7(1), 38–45.
Asana, I. M. D. P., Wiguna, I. K. A. G., Atmaja, K. J., & Sanjaya, I. P. A. (2020). FP-Growth Implementation in Frequent Itemset Mining for Consumer Shopping Pattern Analysis Application. Jurnal Mantik, 4(3), 2063–2070.
Asana, I., Radhitya, M. L., Widiartha, K. K., Santika, P. P., & Wiguna, I. (2020). Inventory control using ABC and min-max analysis on retail management information system. Journal of Physics: Conference Series, 1469(1), 12097.
Atmaja, K. J., Pascima, I. B. N., Asana, I. M. D. P., & Sudipa, I. G. I. (2022). Implementation of Artificial Neural Network on Sales Forecasting Application. Journal of Intelligent Decision Support System (IDSS), 5(4), 124–131.
Darma, U. B., Islam, U., & Utara, S. (2021). Vol . 2 No . 1 Juni 2021. 2(1), 187–193.
Fournier-Viger, P. (2022). High Utility Itemset Mining. Youtube.
Fournier-Viger, P., Chun-Wei Lin, J., Truong-Chi, T., & Nkambou, R. (2019). A Survey of High Utility Itemset Mining. 1–45. https://doi.org/10.1007/978-3-030-04921-8_1
Herlina, H. (2024). Utilization of Big Data for SWOT Analysis in Improving Business Sustainability of MSMEs. TECHNOVATE: Journal of Information Technology and Strategic Innovation Management, 1(2), 89–95. https://doi.org/10.52432/technovate.1.2.2024.89-95
Indah, B., Hafsari, B., Anggrawan, A., & Syahrir, M. (2021). Optimasi Kinerja Algoritma Apriori Dalam Proses Pencarian Frekuensi Itemset Menggunakan Teknik Partisi. 1–15.
Irfa’aturrochmah. (2018). Penentuan Tata Letak Barang Dagangan Berdasarkan Data Transaksi Penjualan Harian Menggunakan Algoritma Apriori. November, 155–168.
Kurnia, F., Monalisa, S., & Fahmi, I. (2017). Penerapan Algoritma Fp-Growth dalam Menentukan Pola Kecelakaan Lalu Lintas. Seminar Nasional Dan Expo Teknik Elektro 2019, 90–96.
Kwintiana, B., Nengsih, T. A., Baradja, A., Harto, B., Sudipa, I. G. I., Handika, I. P. S., Adhicandra, I., & Gugat, R. M. D. (2023). DATA SCIENCE FOR BUSINESS: Pengantar & Penerapan Berbagai Sektor. PT. Sonpedia Publishing Indonesia.
Pandawana, I. D. G. A., Radhitya, M. L., Sandhiyasa, I. M. S., & Bramstya, B. T. (2022). APLIKASI E-SEWA BARANG BERBASIS MOBILE. Jurnal Krisnadana, 1(3), 26–36.
Rahmawati, F., & Merlina, N. (2018). Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori. PIKSEL?: Penelitian Ilmu Komputer Sistem Embedded and Logic, 6(1), 9–20. https://doi.org/10.33558/piksel.v6i1.1390
Rahmi, A. N., & Mikola, Y. A. (2021). Implementasi Algoritma Apriori Untuk Menentukan Pola Pembelian Pada Customer (Studi Kasus: Toko Bakoel Sembako). Information System Journal, 4(1).
Safitri, N., & Bella, C. (2022). PENERAPAN DATA MINING UNTUK ANALISIS POLA PEMBELIAN PELANGGAN ( STUDI KASUS?: TOKO DIENGVA BANDAR JAYA ). 2(1), 1–8.
Saputra, I. K. D. A., Satwika, I. P., & Utami, N. W. (2022). Analisis Transaksi Penjualan Barang Menggunakan Metode Apriori pada UD. Ayu Tirta Manis. Jurnal Krisnadana, 1(2), 11–20.
Sari, A. Y. (2019). Penerapan Association Rule Mining Menggunakan Algoritma Apriori Untuk Menentukan Pola Pembelian Konsumen Pada Data Transaksi Penjualan.
Sibarani, A. J. P. (2020). Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 262–276. https://doi.org/10.35957/jatisi.v7i2.195
Suryadana, K., & Sarasvananda, I. B. G. (2024). Streamlining Inventory Forecasting with Weighted Moving Average Method at Parta Trading Companies. Jurnal Galaksi, 1(1), 12–21.
Tana, M. P., Marisa, F., & Wijaya, I. D. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. J I M P - Jurnal Informatika Merdeka Pasuruan, 3(2), 17–22. https://doi.org/10.37438/jimp.v3i2.167
Tiara Antesia, S. E. (2020). Aturan Asosiasi Data Alat Tulis Kantor Menggunakan. Proceeding SENDIU, 978–979.
Urva, G., Albanna, I., Sungkar, M. S., Gunawan, I. M. A. O., Adhicandra, I., Ramadhan, S., Rahardian, R. L., Handayanto, R. T., Ariana, A. A. G. B., & Atika, P. D. (2023). PENERAPAN DATA MINING DI BERBAGAI BIDANG: Konsep, Metode, dan Studi Kasus. PT. Sonpedia Publishing Indonesia.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Made Leo Radhitya, Ni Komang Mira Widiantari, Made Dwi Putra Asana, Bagus Kusuma Wijaya, I Gede Iwan Sudipa
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.