Sentiment Analysis of Oppenheimer Movie Reviews: Naïve Bayes Algorithm for Public Opinion
DOI:
10.47709/cnahpc.v6i3.4393Keywords:
Sentimen Classification, Oppenheimer, Naive Bayes, TF-IDF, Accuracy RateDimension Badge Record
Abstract
The development of information and communication technology has revolutionized the way people consume and engage with media, particularly in the realm of film. Online platforms such as Netflix, Amazon Prime Video, and YouTube have transformed movie consumption habits, providing a vast array of options for viewers to explore and enjoy. A crucial aspect of this digital landscape is the proliferation of movie reviews, which serve as valuable guides for users seeking to discover films aligned with their preferences. However, the abundance of reviews, often varying in quality and objectivity, necessitates tools capable of effectively processing and understanding these textual data. This research delves into sentiment classification of Oppenheimer movie reviews, utilizing the Naive Bayes algorithm to categorize reviews into positive, negative, and neutral sentiments. The dataset comprising audience reviews and numerical ratings undergoes preprocessing using the TF-IDF method to facilitate numerical representation. Subsequently, the Naïve Bayes algorithm is trained on this processed data to accurately classify sentiments. The model demonstrates exceptional performance, achieving an accuracy rate of 97.45% in distinguishing between positive, negative, and neutral sentiments within Oppenheimer movie reviews. This study underscores the efficacy of the Naive Bayes algorithm in sentiment classification and emphasizes the significance of employing techniques like TF-IDF for enhancing sentiment analysis in the domain of movie reviews.
Downloads
Abstract viewed = 71 times
References
Azzahra Nasution, D., Khotimah, H. H., & Chamidah, N. (2019). PERBANDINGAN NORMALISASI DATA UNTUK KLASIFIKASI WINE MENGGUNAKAN ALGORITMA K-NN (Vol. 4, Issue 1).
Budi Trisno, I., & Agung Raharja, M. (2023). WEBINAR ARTIFICIAL INTELLIGENCE DAN MACHINE LEARNING. JPM Jurnal Pengabdian Mandiri, 2(11). http://bajangjournal.com/index.php/JPM
Homepage, J., Agustina, N. C., Herlina Citra, D., Purnama, W., Nisa, C., & Rozi Kurnia, A. (2022). MALCOM: Indonesian Journal of Machine Learning and Computer Science The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store. 2, 47–54.
Khotimah, A. C., & Utami, E. (2022). COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT. Jurnal Teknik Informatika (JUTIF), 3(3). https://doi.org/10.20884/1.jutif.2022.3.3.254
Najjichah, H., Syukur, A., & Subagyo, H. (2019). PENGARUH TEXT PREPROCESSING DAN KOMBINASINYA PADA PERINGKAS DOKUMEN OTOMATIS TEKS BERBAHASA INDONESIA. In Jurnal Teknologi Informasi (Vol. 15, Issue 1). http://research.
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).
Nurtikasari, Y., Syariful Alam, & Teguh Iman Hermanto. (2022). Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes. INSOLOGI: Jurnal Sains Dan Teknologi, 1(4), 411–423. https://doi.org/10.55123/insologi.v1i4.770
Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085
Rani Yunita, M. K. (2023). Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Kebijakan Penghapusan Kewajiban Skripsi.
Ratna Sari Hutasuhut, A. (2020). Analisis Pengaruh Film Nussa dan Rara terhadap Empati Anak Usia Dini di Kota Padang.
Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020). PRISMA, Prosiding Seminar Nasional Matematika Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5. 3, 64–71. https://journal.unnes.ac.id/sju/index.php/prisma/
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, & Fitri Nurapriani. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 1–7. https://doi.org/10.35134/komtekinfo.v10i1.330
Tejawati, A., Septiarini, A., Rismawati, R., & Puspitasari, N. (2023). COMPARISON OF K-NEAREST NEIGHBOR AND NAIVE BAYES METHODS FOR CLASSIFICATION OF NEWS CONTENT. Jurnal Teknik Informatika (Jutif), 4(2), 401–412. https://doi.org/10.52436/1.jutif.2023.4.2.676
Yunefri, Y., & Ersan Fadrial, Y. (2021). CHATBOT PADA SMART COOPERATIVE ORIENTED PROBLEM MENGGUNAKAN NATURAL LANGUAGE PROCESSING DAN NAIVE BAYES CLASSIFIER CHATBOT ON SMART COOPERATIVE ORIENTED PROBLEMS USING NATURAL LANGUAGE PROCESSING AND NAIVE BAYES CLASSIFIER. Journal of Information Technology and Computer Science (INTECOMS), 4(2), 2021.
Zuhri, K., Adha, N., & Saputri, O. (2020). Analisis Sentimen Masyarakat Terhadap Pilpres 2019 Berdasarkan Opini Dari Twitter Menggunakan Metode Naive Bayes Classifier. In Journal of Computer and Information Systems Ampera (Vol. 1, Issue 3). https://journal-computing.org/index.php/journal-cisa/index
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Berliana Noviansyah, Muhammad Makmun Effendi, Yudianto Achmad
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.