Flood Prediction Using Support Vector Regression (Case Study of Floodgates in Jakarta)
DOI:
10.47709/cnahpc.v6i3.4360Keywords:
Flood, Forecasting, Prediction, Root Mean Square Error (RMSE), Support Vector Regression (SVR)Dimension Badge Record
Abstract
Flood can be interpreted as an event that occurs suddenly and quickly enough where the water discharge in the drainage channel cannot be accommodated, so that the blocked area causes the water discharge in the drainage channel in several surrounding areas to overflow and is one of the natural disasters that occurs at an unexpected time and cannot be prevented, because of this, a prediction must be made to detect floods for the next day. Flood prediction is a crucial aspect of disaster management and mitigation, particularly in flood-prone areas such as Jakarta, Indonesia. This study aims to leverage Support Vector Regression (SVR) to predict flood events by analyzing various environmental and hydrological factors that influence flooding. The primary data sources include historical wheater data, river water levels, floodgate positions in Jakarta. The data preprocessing involved cleaning, handling missing values, and normalizing the datasets to ensure compatibility with the SVR model. Feature selection was conducted to identify the most relevant predictors of flooding, such as wheater data, and river water levels. The dataset was then split into training and testing sets, maintaining an 80-20 ratio to ensure robust model validation. An SVR model with a radial basis function (RBF) kernel was trained on the standardized training data. The model's performance was evaluated using Root Mean Squared Error (RMSE) as the primary metric. The RMSE produced in this study was 0.112 with an R Square accuracy of 0.977. The results indicated that the SVR model could effectively predict flood events with a reasonable degree of accuracy, demonstrating its potential as a valuable tool in flood forecasting.
Downloads
Abstract viewed = 63 times
References
Adipraja, P. F. E., Sulistyo, D. A., & Wahyuni, I. (2020). Pemodelan Fuzzy Inference System Tsukamoto Untuk Prediksi Kejadian Banjir Di Kota Malang. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(Vol 7, No 1: Februari 2020), 189–196. https://doi.org/10.25126/jtiik.202071898
Ahmad, F. (2020). PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT . X. JISI: JURNAL INTEGRASI SISTEM INDUSTRI, 7(1), 31–39.
Arfan, A., & ETP, L. (2020). Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia. PETIR, 13(1), 33–43. https://doi.org/10.33322/petir.v13i1.858
Badan Nasional Penanggulangan Bencana. (2024). Data dan Informasi Kebencanaan Bulanan Teraktual. Info Bencana, 5(1), 1–19.
Cumel, David Zamri, Rahmaddeni, S. (2022). Perbandingan Metode Data Mining untuk Prediksi Banjir dengan Algoritma Naïve Bayes dan KNN. SENTIMAS: Seminar Nasional Penelitian Dan …, 40–48.
Data Tinggi Muka Air Jakarta 30 Hari Terakhir. (2023).
Dodangeh, E., Panahi, M., Rezaie, F., Lee, S., Tien Bui, D., Lee, C.-W., & Pradhan, B. (2020). Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 590, 125423. https://doi.org/10.1016/j.jhydrol.2020.125423
Dwiasnati, S., & Devianto, Y. (2021). Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir. Prosiding SISFOTEK, 202–207.
Faldi, F., NurHalisha, T., Pranoto, W. J., & ... (2023). The application of particle swarm optimization (PSO) to improve the accuracy of the naive bayes algorithm in predicting floods in the city of Samarinda. Journal of Intelligent …, 6(3), 138–146.
Faris Nasirudin, & Abdullah Ahmad dzikrullah. (2023). Pemodelan Harga Cabai Indonesia dengan Metode Seasonal ARIMAX. Jurnal Statistika Dan Aplikasinya, 7(1), 105–115. https://doi.org/10.21009/jsa.07110
Febriasto, R., Paramita, N. L. P. S. P., & Wibawati, W. (2020). Prediksi Kuat Tekan Semen untuk Produk Portland Composite Cement (PCC) di PT. Semen Indonesia (Persero) Tbk. Menggunakan Support Vector Regression (SVR) Dengan Feature Selection. Jurnal Sains Dan Seni ITS, 8(2). https://doi.org/10.12962/j23373520.v8i2.43071
Gunawan. (2020). Eskalasi Banjir Perkotaan Di Indonesia. Media Informasi Kesejahteraan Sosial, 44(1), 227–247.
Hadjar, I. (2022). Budaya, Identitas, dan Perilaku Masyarakat dalam Menghadapi Banjir di Kota Makassar. Indonesian Annual Conference Series, 160–165.
Hamirsa, M. H., & Rumita, R. (1927). USULAN PERENCANAAN PERAMALAN ( FORECASTING ) DAN SAFETY STOCK PERSEDIAAN SPARE PART BUSI CHAMPION TYPE RA7YC - 2 ( EV - 01 / EW - 01 / 2 ) MENGGUNAKAN METODE TIME SERIES PADA PT TRIANGLE MOTORINDO SEMARANG. 2.
Ihwan, A., Faizah, A., Ester, I., Maulana, M., Ilyasa, M., Pratama, N., & Rubyha, R. (2023). Memperkuat Ekososial untuk Mencegah Dampak Banjir di Malang. WASKITA?: Jurnal Pendidikan Nilai Dan Pembangunan Karakter, 7(2), 221–237.
Ishlah, A. W., Sudarno, S., & Kartikasari, P. (2023). IMPLEMENTASI GRIDSEARCHCV PADA SUPPORT VECTOR REGRESSION (SVR) UNTUK PERAMALAN HARGA SAHAM. Jurnal Gaussian, 12(2), 276–286. https://doi.org/10.14710/j.gauss.12.2.276-286
Iskandar, A. P. (2020). Efektifitas Jaringan Syaraf Tiruan Metode Backpropagation Dalam Memprediksi Potensi Banjir. Journal of Technopreneurship and Information System (JTIS), 3(2), 50–56.
Mayori, A., & Tresnawati, Y. (2024). Implementasi Algoritma K-Means Clustering Pada Penjualan Makanan (Studi Kasus?: Ayam Betutu Warung Wardana). AGENTS: Journal of Artificial Intelligence and Data Science, 4(1), 1–12.
Mehravar, S., Razavi-Termeh, S. V., Moghimi, A., Ranjgar, B., Foroughnia, F., & Amani, M. (2023). Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression. Journal of Hydrology, 617, 129100. https://doi.org/10.1016/j.jhydrol.2023.129100
Melati N, R., Waluyo Purboyo, T., & Kalista, M. (2023). Prediksi Penderita Tuberkulosis Menggunakan Algoritma Support Vector Regression (SVR). E-Proceeding of Engineering, 10(1), 736–741.
Nugroho, D. A., & Handayani, W. (2021). Kajian Faktor Penyebab Banjir dalam Perspektif Wilayah Sungai: Pembelajaran Dari Sub Sistem Drainase Sungai Beringin. Jurnal Pembangunan Wilayah Dan Kota, 17(2), 119–136. https://doi.org/10.14710/pwk.v17i2.33912
Panahi, M., Dodangeh, E., Rezaie, F., Khosravi, K., Van Le, H., Lee, M.-J., Lee, S., & Thai Pham, B. (2021). Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. CATENA, 199, 105114. https://doi.org/10.1016/j.catena.2020.105114
PANTAU BANJIR JAKARTA. (2020).
Rais, Z. (2022). ANALISIS SUPPORT VECTOR REGRESSION ( SVR ) DENGAN KERNEL RADIAL BASIS FUNCTION ( RBF ) UNTUK MEMPREDIKSI LAJU INFLASI DI INDONESIA. 4(1), 30–38. https://doi.org/10.35580/variansiunm13
Saha, A., Pal, S. C., Arabameri, A., Blaschke, T., Panahi, S., Chowdhuri, I., Chakrabortty, R., Costache, R., & Arora, A. (2021). Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water (Switzerland), 13(2), 1–27. https://doi.org/10.3390/w13020241
Stanley, F., & Lisangan, E. A. (2020). Sistem Dan Simulasi Deteksi Banjir Untuk Peringatan Dini Diolah Memakai Metode KNN Berbasis Arduino. Jurnal Telematika, 8(1), 9–22.
Sulaksana, N., Rendra, P. P. R., & Sulastri, M. (2021). Sosialisasi Mitigasi Bencana Longsor Dan Banjir Secara Virtual Di Masa Pandemi Covid-19. Kumawula: Jurnal Pengabdian Kepada Masyarakat, 4(3), 465. https://doi.org/10.24198/kumawula.v4i3.35516
Yudanegara, R. A., Astutik, D., Hernandi, A., Soedarmodjo, T. P., & Alexander, E. (2021). PENGGUNAAN METODE INVERSE DISTANCE WEIGHTED ( IDW ) UNTUK PEMETAAN ZONA NILAI TANAH ( STUDI KASUS?: KELURAHAN GEDONG MENENG , BANDAR LAMPUNG ). Jurnal “ELIPSOIDA,” 04(02).
Yuliantika, S., & Kartika, D. L. (2022). Implementasi Metode Fuzzy Mamdani sebagai Deteksi Awal Banjir Lokal di Bendung Gerak Serayu. Square?: Journal of Mathematics and Mathematics Education, 4(1), 17–25. https://doi.org/10.21580/square.2022.4.1.11177
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Amanda Azi, Robby Febrianur Saleh, Wildan Muhammmad Ardana, Kusrini Kusrini
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.