ac

Sentiment Analysis of Starlink on Twitter Using Support Vector Machine Algorithm

Authors

  • Sardin Sardin Informatics Engineering, Universitas Pelita Bangsa, Bekasi Regency, Indonesia
  • Agung Nugroho Informatics Engineering, Universitas Pelita Bangsa, Bekasi Regency, Indonesia
  • Nanang Tedi Kurniadi Informatics Engineering, Universitas Pelita Bangsa, Bekasi Regency, Indonesia

DOI:

10.47709/cnahpc.v6i3.4348

Keywords:

Sentiment Analysis, Internet, Starlink, Classification, Support Vector Machine

Dimension Badge Record



Abstract

Indonesia faces unique challenges in the provision of internet services. Cable and fiber optic infrastructure is often difficult and expensive to implement in many areas. Based on data from the Asosiasi Penyelenggara Jasa Internet Indonesia (APJII), by 2024 internet users will reach 221.5 million. Starlink, Elon Musk's satellite-based internet service through his SpaceX company, offers an innovative solution to fill the void in Indonesia's telecommunications infrastructure. However, Starlink's presence has raised concerns among local service providers, particularly regarding potential market disruption and existing regulations. Starlink could also pose a potential threat to Indonesia's security and sovereignty. Starlink has been a hot topic on various social media platforms, including Twitter. Twitter is a very popular social media platform with millions of active users who often share their opinions in real-time. The number of public responses in assessing the presence of Starlink in Indonesia, became a reference for a sentiment analysis. The Support Vector Machine algorithm is used to classify opinions into positive and negative categories. Based on testing that has been done using the Cross Validation technique with a K-Fold value with a total of 1976 tweets data. The results show that 1112 tweets contain positive sentiment and 864 tweets contain negative sentiment. This shows that 56.3% of people agree with the presence of starlink in Indonesia. While from the use of the Support Vertor Machine algorithm, the Accruracy value is 76.22%, Precision is 77.48%, and Recall is 81.38%.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 65 times

References

Agus Tri Haryanto. (2024, April 26). Dampak Baik-Buruk Starlink Elon Musk Jualan Internet di Indonesia.

Amrullah, A. Z., Sofyan Anas, A., Adrian, M., & Hidayat, J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal, 2(1). https://doi.org/10.30812/bite.v2i1.804

Ananda, F. D., & Pristyanto, Y. (2021). Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine. MATRIK?: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 407–416. https://doi.org/10.30812/matrik.v20i2.1130

Andy Nugroho. (2020, May 5). Sejarah ARPANET Sebagai Cikal Bakal Adanya Internet.

Darwis, D., Shintya Pratiwi, E., Ferico, A., & Pasaribu, O. (2020). PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA. In Jurnal Ilmiah Edutic (Vol. 7).

Ismail, A. R., & Raden Bagus Fajriya Hakim. (2023). Implementasi Lexicon Based Untuk Analisis Sentimen Dalam Menentukan Rekomendasi Pantai Di DI Yogyakarta Berdasarkan Data Twitter. Emerging Statistics and Data Science Journal, 1(1), 37–46. https://doi.org/10.20885/esds.vol1.iss.1.art5

Malik Zuhdi, A., Utami, E., & Raharjo, S. (2019). ANALISIS SENTIMENT TWITTER TERHADAP CAPRES INDONESIA 2019 DENGAN METODE K-NN (Vol. 5).

Muhammad Arif. (2024, February 7). APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang.

Muhammad Fuad. (2024, May 20). Starlink: Revolusi Konektivitas Internet di Indonesia.

Putra, A., Haeirudin, D., Khairunnisa, H., & Latifah, R. (2021). Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Pada Media Sosial Twitter Menggunakan Algoritma Svm.

Rangga, M., Nasution, A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. JURNAL INFORMATIKA, 6(2), 212–218. Retrieved from http://ejournal.bsi.ac.id/ejurnal/index.php/ji

Sekretariat KADIN Indonesia. (2024, June 7). Dampak dan Manfaat Kehadiran Starlink.

Slamet, R., Gata, W., Novtariany, A., Hilyati, K., & Jariyah, F. A. (2022). Analisis Sentimen Twitter Terhadap Penggunaan Artis Korea Selatan Sebagai Brand Ambassador Produk Kecantikan Lokal. INTECOMS: Journal of Information Technology and Computer Science, 5(1), 145–153. https://doi.org/10.31539/intecoms.v5i1.3933

Styawati, S., Hendrastuty, N., & Isnain, A. R. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. https://doi.org/10.30591/jpit.v6i3.2870

Utami, D. S., & Erfina, A. (2021). ANALISIS SENTIMEN PINJAMAN ONLINE DI TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM).

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-07-20
Accepted Date: 2024-07-21
Published Date: 2024-07-31

How to Cite

Sardin, S., Nugroho, A. ., & Kurniadi, N. T. . (2024). Sentiment Analysis of Starlink on Twitter Using Support Vector Machine Algorithm. Journal of Computer Networks, Architecture and High Performance Computing, 6(3), 1321-1332. https://doi.org/10.47709/cnahpc.v6i3.4348