Analysis of Vina Film Sentiment on Social Media X Using The Naïve Bayes Method
DOI:
10.47709/cnahpc.v6i3.4341Keywords:
Sentiment Analysis, Naïve Bayes, TF-IDF, Data Mining, Web ScrappingDimension Badge Record
Abstract
The increasingly rapid development of technology and information, one of which is the internet. Where users can share opinions and discuss various topics or problems around them, namely social media One of the news items that frequently appears as a trending topic on X is the Vina film controversy. However, with the large amount of review data available, it will be difficult to process manually. Therefore, sentiment analysis is needed to see whether people's tendencies toward the Vina film case are positive or negative. The stages carried out were data collection taken via web scrapping with an initial amount of data of 833 and processed through the preprocessing stage, including cleaning, case folding, normalization, stopword removal, tokenization, and stemming, the data became 830. The application of the Naïve Bayes algorithm in this research uses the probability method to classify and predict 664 training data and 166 test data, with the help of the Python library. The accuracy calculation results show quite good performance with TF-IDF weighting producing an accuracy of 78%, precision of 80%, and recall of 90%, f1-score of 84%. Analysis from this research shows that the dominance of negative sentiment is 517 while positive sentiment is 313. The amount and quality of training data play an important role in system quality, where high data quality provides better accuracy in predicting sentiment classes.
Downloads
Abstract viewed = 63 times
References
Asyer, A. A., & Pakereng, M. (2023). Analisis Sentimen Tweet Pengguna Twitter Terkait Diabetes Menggunakan Metode Naive Bayes. Jutisi: Jurnal Ilmiah Teknik …. Retrieved from http://ojs.stmik-banjarbaru.ac.id/index.php/jutisi/article/view/1234
Hibattullah, N. M., & Faraby, S. Al. (2021). Analisis Sentimen terhadap Ulasan Film Berbahasa Inggris Menggunakan Metode Support Vector Machine dengan Feature Selection Information Gain. 8(5), 10138–10152.
Ikhsan, M., & Kurniawan, R. R. (2023). Penerapan Text Mining pada Sistem Rekomendasi Pembimbing Skripsi Mahasiswa Menggunakan Algoritma Naïve Bayes Classifier. Indonesian Journal of Computer Science Attribution, 12(6), 2023–4196.
Legiawati, N., Hermanto, T. I., & Ramadhan, Y. R. (2022). Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO. JURIKOM (Jurnal Riset Komputer), 9(4), 930. https://doi.org/10.30865/jurikom.v9i4.4629
Muhammad Rizal, Martanto, M., & Hayati, U. (2024). Analisis Sentimen Pengguna Twitter Terkait Film One Piece Menggunakan Metode Naive Bayes. Jurnal Sistem Informasi Kaputama (JSIK), 8(1), 38–47. https://doi.org/10.59697/jsik.v8i1.522
Naraswati, N. P. G., Nooraeni, R., Rosmilda, D. C., Desinta, D., Khairi, F., & Damaiyanti, R. (2021). Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification. Sistemasi, 10(1), 222. https://doi.org/10.32520/stmsi.v10i1.1179
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.
Novianti, N., Musa, D. T., & Darmawan, D. R. (2022). Analisis Wacana Kritis Sara Mills Tentang Stereotipe Terhadap Perempuan Dengan Profesi Ibu Rumah Tangga Dalam Film Rumput Tetangga. Rekam, 18(1), 25–36. https://doi.org/10.24821/rekam.v18i1.6893
Nurhakim, M. A., Widiastiwi, Y., & Chamidah, N. (2022). Analisis Sentimen Terhadap Ulasan Kepuasan Pelanggan Pada Marketplace Tokopedia Di Jejaring Sosial Twitter Menggunakan Algoritma Naïve Bayes. Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer Dan Aplikasinya, 3(1), 264–278. Retrieved from https://conference.upnvj.ac.id/index.php/senamika/article/view/2043
Rahma, N. A., Garno, & Sulistiyowati, N. (2022). Analisis Sentimen Tempat Wisata Di Jakarta Pasca Covid-19 Dengan Algoritma Naïve Bayes Universitas Pahlawan Tuanku Tambusai. Jurnal Pendidikan Dan Konseling, 4(6), 5894–5908.
Razaq, M. T., Nurjanah, D., & Nurrahmi, H. (2023). Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier dengan Fitur TF-IDF. E-Proceeding of Engineering, 10(2), 1698–1712. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19997
Rosaly, R., & Prasetyo, A. (2020). Flowchart Beserta Fungsi dan Simbol-Simbol. Journal of Chemical Information and Modeling, 2(3), 5–7.
Salsabila, S. M., Alim Murtopo, A., & Fadhilah, N. (2022). Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier. Jurnal Minfo Polgan, 11(2), 30–35. https://doi.org/10.33395/jmp.v11i2.11640
Santoso, Z. A. A. M. S. M. J. D. (2021). PENERAPAN METODE SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER. Journal of Information System Management (JOISM), (Vol. 3 No. 1 (2021): Juni), 16–21. Retrieved from https://jurnal.amikom.ac.id/index.php/joism/article/view/558/229
Saputra, I., AJI PAMBUDI, R. S., DARONO, H. E., AMSURY, F., FAHDIA, M. R., RAMADHAN, B., & ARDIANSYAH, A. (2021). Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning. Faktor Exacta, 13(4), 200. https://doi.org/10.30998/faktorexacta.v13i4.7074
Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. Jurnal SIMETRIS, 10(2), 681–686.
Tanggraeni, A. I., & Sitokdana, M. N. N. (2022). Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 785–795. https://doi.org/10.35957/jatisi.v9i2.1835
Wandani, A. (2021). Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 651–665.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Dini Asti, Raissa Amanda Putri
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.