Design of Mask Detection Application Using Tensorflow Lite based on Android Mobile
DOI:
10.47709/cnahpc.v6i3.4329Keywords:
UML, Android, Deep Learning, Object Detection, TensorFlowDimension Badge Record
Abstract
A mask is a type of personal protective equipment (PPE) that is essential for protecting the nose and mouth from contamination by droplets or airborne particles. The use of masks became highly popular during the Covid-19 pandemic, which began in December 2019 in China and peaked in Indonesia in 2020. Despite the pandemic subsiding and vaccinations increasing immunity, some companies still require masks to prevent the spread of illnesses such as colds and flu, especially in work processes that produce smoke, such as soldering and welding. To ensure employees comply with mask usage, effective supervision is necessary. Manual supervision is less efficient, thus a digital detection method is needed. This study developed a mask detection application using deep learning algorithms and the TensorFlow Lite framework on an Android platform. The application can detect mask usage with 100% accuracy at a distance of 1 to 5 meters. The system was tested under various lighting conditions and environments to ensure reliability. Additionally, the implementation of this technology can be extended to other public areas to ensure compliance with health protocols. This tool helps companies easily monitor and enforce mask-wearing discipline among employees, thereby enhancing workplace safety and health. Future work could explore the integration of this system with other health monitoring tools to create a comprehensive safety solution.
Downloads
Abstract viewed = 71 times
References
Abdul, M., Irham, R., & Prasetya, D. A. (2020). Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker Untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19. Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker Untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19, 47–55.
Atmojo, joko tri, Iswahyuni, S., Rejo, & Setyorini, C. (2020). Penggunaan Masker Dalam Pencegahan Dan Penanganan Covid-19. Penggunaan Masker Dalam Pencegahan Dan Penanganan Covid-19: Rasionalitas, Efektivitas, Dan Isu Terkini, 3(2), 84–95.
Chairani, I. (2020). Dampak Pandemi Covid-19 Dalam Perspektif Gender Di Indonesia. Jurnal Kependudukan Indonesia, 2902, 39. https://doi.org/10.14203/jki.v0i0.571
Ferdiansyah, A. I. (2021). Aplikasi Deteksi Objek menggunakan Tensorflow Lite pada Android untuk Sistem Peringatan Dini Tabrakan pada Mobil.
Fran Fahlifi, A., Heriansyah, & Miranto, A. (2021). Sistem Pendeteksi Penggunaan Masker dengan Metode Convolutional Neural Network pada SPOTKASTER. ELECTRON?: Jurnal Ilmiah Teknik Elektro, 2(2), 33–40. https://doi.org/10.33019/electron.v2i2.6
Hasyim, F., Malik, K., & Rizal, F. (2021). Jurnal Kecerdasan Buatan , Komputasi dan Teknologi Informasi Implementasi Algoritma Convolutional Neural Networks ( CNN ) Untuk Klasifikasi Batik. X(X), 40–47.
Lambacing, M. M., & Ferdiansyah, F. (2020). Rancang Bangun New Normal Covid-19 Masker Detektor Dengan Notifikasi Telegram Berbasis Internet of Things. Dinamik, 25(2), 77–84. https://doi.org/10.35315/dinamik.v25i2.8070
Mokobimbing, M. K., Maramis, F. R. R., & Wowor, R. (2021). Gambaran Perilaku Masyarakat Terhadap Tindakan Pencegahan Covid-19 Di Desa Pakuweru Kecamatan Tenga Kabupaten Minahasa Selatan. Jurnal KESMAS, 10(7), 1–12.
Muharram, R. F., Suryadi, A., Raya, J., No, T., Gedong, K., Rebo, P., & Timur, J. (2022). Implementasi artificial intelligence untuk deteksi masker secara realtime dengan tensorflow dan ssdmobilenet Berbasis python. Jurnal Widya, 3(2), 281–290.
Nelson, A., Ridlo, M., & Kurniawan, M. H. (2021). Sikap Dan Perilaku Masyarakat Dalam Pencegahan Penularan Coronavirus Disease 2019 (Covid-19) Di Jakarta Selatan. Indonesian Journal of Nursing Scientific, 1(1), 8–17.
Nursulistio, F., Kurniawardhani, A., & Fudholi, D. H. (2022). Deteksi Objek Masker Menggunakan EfficientDet-Lite3. Automata, 3(2).
Purnama, B., Winanto, E. A., Shairuppdin, Wijaya, I. S., Jendral, J., No, S., Selatan, T. J., & Id, B. A. (2024). Deteksi Malware Ransomware Menggunakan Deep Neural Network. JEPIN (Jurnal Edukasi Dan Penelitian Informatika) , 9(1), 50–58.
Putra, D. R. R., & Saputra, R. A. (2023). Implementasi Convolutional Neural Network (Cnn) Untuk Mendeteksi Penggunaan Masker Pada Gambar. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3), 710–714. https://doi.org/10.23960/jitet.v11i3.3286
Sitorus, H. (2022). Implementasi Deep Learning Mendeteksi Pengguna Masker Berbasis Framework Tensorflow Dengan Metode Convolutional Neural Network. SENTRI: Jurnal Riset Ilmiah, 1(3), 862–874. https://doi.org/10.55681/sentri.v1i3.298
Wiranda, N., Purba, H. S., & Sukmawati, R. A. (2020). Survei Penggunaan Tensorflow pada Machine Learning untuk Identifikasi Ikan Kawasan Lahan Basah. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 10(2), 179. https://doi.org/10.22146/ijeis.58315
Yusra, Z., Zulkarnain, R., & Sofino, S. (2021). Pengelolaan Lkp Pada Masa Pendmik Covid-19. Journal Of Lifelong Learning, 4(1), 15–22. https://doi.org/10.33369/joll.4.1.15-22
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 M Makmun Effendi, Ahmad Turmudi, Asep Arwan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.